Skip to main content
Log in

Enhancing densification and electrical properties of KNN-based lead-free ceramics via two-step sintering

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

0.95(Li0.02Na0.50K0.48)(Nb0.95Sb0.05)O3-0.05AgTaO3 (0.95LNKNS-0.05AT) lead-free piezoelectric ceramics were prepared by conventional ceramic processing via the two-step sintering process (abbreviated as TSS). The influences of sintering conditions in the first stage of the TSS process on densification, dielectric and piezoelectric properties of the 0.95LNKNS-0.05AT ceramics prepared by the TSS were deeply studied. By introducing TSS for preparing the 0.95LNKNS-0.05AT ceramics, the volatilization of alkali metal elements can be decreased and all the 0.95LNKNS-0.05AT ceramics show high densification. By optimizing the T1 sintering temperature and t1 holding time in the first stage of the TSS, the relative permittivity of the 0.95LNKNS-0.05AT ceramics sintered at 1140 °C for 0.5 h and 1050 °C for 8 h is increased to 5957 at 1 kHz, while the relative permittivity of the 0.95LNKNS-0.05AT ceramics prepared by the conventional sintering method (abbreviated as CS) is only 5205. The d33, g33, and Kp values are increased from 134 pC/N, 14.6 × 10–3 Vm/N, and 17.4% to 224 pC/N, 25.5 × 10–3 Vm/N, and 31.9%, respectively. The 0.95LNKNS-0.05AT ceramics exhibit thermal activation relaxation behavior, and the high-temperature Cole–Cole impedance performance can be fitted well by the equivalent circuit (RQC) and equivalent circuit (RC) connected in series. The space charge effect conforms to the Arrhenius relationship, which presents a thermally activated hopping type process and relates to the oxygen vacancies generated by the evaporation of alkali metals during the TSS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Setter, R. Waser, Acta Mater. 48, 151–178 (2000)

    Article  CAS  Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  3. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R. 135, 1–57 (2019)

    Article  Google Scholar 

  4. I. Coondoo, N. Panwar, A. Kholkin, J. Adv. Dielectr. 03, 1330002 (2013)

    Article  Google Scholar 

  5. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  6. T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  7. C. Liu, D. Xiao, T. Huang, J. Wu, F. Li, B. Wu, J. Zhu, Mater. Lett. 120, 275–278 (2014)

    Article  CAS  Google Scholar 

  8. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Lou, X. Wang, Dalton Trans. 43, 11759–11766 (2014)

    Article  CAS  Google Scholar 

  9. F.K. Bahanurdin, J.J. Mohamed, Z.A. Ahmad, Mater. Sci. Forum. 888, 42–46 (2017)

    Article  Google Scholar 

  10. B. Fang, N. Jiang, J. Ding, Phys. Status Solidi A. 209, 1239–1244 (2012)

    Article  CAS  Google Scholar 

  11. J.P. Sharma, D. Kumar, A.K. Sharma, Solid State Commun. 334, 114345 (2021)

    Article  Google Scholar 

  12. J. Li, K. Wang, F. Zhu, L. Cheng, F. Yao, J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  13. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 141, 13987–13994 (2019)

    Article  CAS  Google Scholar 

  14. F. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa, J.E. Garcia, R.E. Rojas-Hernandez, M. Castro, L. Ramajo, J. Eur. Ceram. Soc. 37, 3501–3509 (2017)

    Article  CAS  Google Scholar 

  15. J. Eduardo Garcia, F. Rubio-Marcos, J. Appl. Phys. 127, 131102 (2020)

    Article  Google Scholar 

  16. N.J. Loh, L. Simao, C.A. Faller, A. De Noni, O.R.K. Montedo Jr., Ceram. Int. 42, 12556–12572 (2016)

    Article  CAS  Google Scholar 

  17. C.A. Souza, J.A. Eiras, M.H. Lente, Ferroelectr. 499, 47–56 (2016)

    Article  CAS  Google Scholar 

  18. J.-H. Ji, U.-C. Moon, H.-I. Kwon, J.-H. Koh, Ceram. Int. 43, S97–S101 (2017)

    Article  CAS  Google Scholar 

  19. C. Wang, B. Fang, Y. Qu, Z. Chen, S. Zhang, J. Ding, J. Alloys Compd. 832, 153043 (2020)

    Article  CAS  Google Scholar 

  20. P.D. Gio, L.D. Vuong, L.T.U. Tu, J. Mater. Sci. Mater. Electron. 32, 13738–13747 (2021)

    Article  CAS  Google Scholar 

  21. R. Zhu, B. Fang, X. Zhao, S. Zhang, Z. Chen, J. Ding, H. Luo, J. Alloys Compd. 735, 496–509 (2018)

    Article  CAS  Google Scholar 

  22. J.-H. Ji, J. Kim, J.-H. Koh, J. Alloys Compd. 698, 938–943 (2017)

    Article  CAS  Google Scholar 

  23. C. Ding, B. Fang, Q. Du, L. Zhou, Phys. Status Solidi A. 207, 979–985 (2010)

    Article  CAS  Google Scholar 

  24. X. Liu, M. Zhu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, J. Alloys Compd. 613, 219–225 (2014)

    Article  CAS  Google Scholar 

  25. Y. Zhang, B. Shen, J. Zhai, H. Zeng, J. Am. Ceram. Soc. 99, 752–755 (2016)

    Article  CAS  Google Scholar 

  26. N. Jiang, B. Fang, J. Wu, Q. Du, J. Alloys Compd. 509, 2420–2424 (2011)

    Article  CAS  Google Scholar 

  27. A.P. Espinosa, L. Ramajo, F. Rubio-Marcos, C. Macchi, A. Somoza, M. Castro, J. Eur. Ceram. Soc. 41, 1288–1298 (2021)

    Article  CAS  Google Scholar 

  28. H. Zhang, X. Li, X. Chen, H. Zhou, X. Li, X. Yan, G. Liu, J. Sun, J. Electron. Mater. 48, 4017–4024 (2019)

    Article  CAS  Google Scholar 

  29. F. Rubio-Marcos, M.A. Banares, J.J. Romero, J.F. Fernandez, J. Raman Spectrosc. 42, 639–643 (2011)

    Article  CAS  Google Scholar 

  30. P. Li, Y. Huan, W.W. Yang, F.Y. Zhu, X.L. Li, X.M. Zhang, B. Shen, J.W. Zhai, Acta Mater. 165, 486–495 (2019)

    Article  CAS  Google Scholar 

  31. K. Kakimoto, K. Akao, Y.P. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064–7067 (2005)

    Article  CAS  Google Scholar 

  32. F. Bortolani, A. del Campo, J.F. Fernandez, F. Clemens, F. Rubio-Marcos, Chem. Mater. 26, 3838–3848 (2014)

    Article  CAS  Google Scholar 

  33. M.R. Bafandeh, R. Gharahkhani, J.S. Lee, Ceram. Int. 41, 163–170 (2015)

    Article  CAS  Google Scholar 

  34. F. Rubio-Marcos, J.J. Romero, M.S. Martin-Gonzalez, J.F. Fernandez, J. Eur. Ceram. Soc. 30, 2763–2771 (2010)

    Article  CAS  Google Scholar 

  35. Y. Cheng, J. Xing, T. Wang, F. Wang, R. Li, X. Sun, L. Xie, Z. Tan, J. Zhu, J. Mater. Sci. Mater. Electron. 32, 20211–20224 (2021)

    Article  CAS  Google Scholar 

  36. K. Uchino, S. Nomura, Ferroelectr. 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  37. W. Xiaoyong, F. Yujun, Y. Xi, Appl. Phys. Lett. 83, 2031–2033 (2003)

    Article  Google Scholar 

  38. R. Zhu, B. Fang, X. Zhao, S. Zhang, D. Wu, J. Ding, J. Eur. Ceram. Soc. 38, 1463–1472 (2018)

    Article  CAS  Google Scholar 

  39. N. Zidi, A. Chaouchi, S. d’Astorg, M. Rguiti, C. Courtois, J. Alloys Compd. 590, 557–564 (2014)

    Article  CAS  Google Scholar 

  40. X. Dong, X. Li, X. Chen, J. Wu, H. Zhou, Chem. Eng. J. 409, 128231 (2021)

    Article  CAS  Google Scholar 

  41. T. Yan, K. Chen, C. Li, M. Liu, J. Wang, L. Fang, L. Liu, J. Adv. Ceram. 10, 809–819 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Key Laboratory of Surface Engineering and Advanced Materials for Petroleum and Chemical Industry (Changzhou University) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bijun Fang or Jianning Ding.

Ethics declarations

Conflicts of interest

We confirm that this work does not have conflicts of interest existed with others.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Fang, B., Zhang, S. et al. Enhancing densification and electrical properties of KNN-based lead-free ceramics via two-step sintering. J. Korean Ceram. Soc. 59, 551–564 (2022). https://doi.org/10.1007/s43207-022-00215-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00215-y

Keywords

Navigation