Skip to main content

Advertisement

Log in

Pressureless sintering of SiC matrix composites reinforced with nano-β-SiC and graphene

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) is an effective material for high-temperature engineering applications owing to its desirable properties such as high elastic modulus, high hardness, and melting temperature, high thermal conductivity, good corrosion and oxidation resistance, low density, and coefficient of thermal expansion compared with other advanced ceramics. Nevertheless, poor sinterability and low toughness limit its use, which can be overcome using appropriate additives. In this study, the effect of different amounts of nano-β-SiC (0, 5, 10, and 15 wt.%) and graphene (0, 1, 2, and 3 wt.%) particles on the sinterability behavior and microstructure of SiC composite has been investigated. After weighing, dispersing nano-β-SiC and graphene, and mixing the starting materials, milling was carried out at 180 rpm for 3 h. The materials obtained were then compressed uniaxially under a pressure of 75 MPa and then were compressed again through CIP under 150 MPa. To remove volatile products, the pyrolysis process was performed at 800 °C under Ar atmosphere. Finally, the samples were sintered at 2200 °C for 2 h by the pressureless sintering process. XRD analysis was used to investigate the phases and FESEM images were used to study the microstructure. According to the XRD patterns, β-SiC particles were converted to α-SiC, which was accompanied by the elongation of SiC grains. Also, no reaction was observed between graphene and the SiC matrix. According to the FESEM images, the samples containing 5 wt.% nano-β-SiC and 1 wt.% graphene showed a uniform distribution of reinforcement particles but with increasing the amount of the reinforcement particles, agglomeration was observed. According to the results, upon increasing the nano-β-SiC up to 5 wt% and graphene up to 1 wt.%, all the measured properties including relative density, and linear shrinkage improved and reached 99.04%, and 18.01%, respectively. However, with increasing the additives, these properties deteriorated due to increasing porosity and agglomeration in the composite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Kultayeva, Y.-W. Kim, Mechanical, thermal, and electrical properties of pressureless sintered SiC–AlN ceramics. Ceram. Int. 46(11), 19264–19273 (2020)

    Article  CAS  Google Scholar 

  2. M.V. Tomkovich et al., Sintered silicon carbide based materials: mechanical properties vs. structure. Refract. Ind. Ceram 60(5), 445–454 (2020)

    Article  CAS  Google Scholar 

  3. H.-M. Kim, Y.-W. Kim, Low temperature pressureless sintering of silicon carbide ceramics with alumina–yttria–magnesia-calcia. J. Ceram. Soc. Jpn. 127(4), 207–214 (2019)

    Article  CAS  Google Scholar 

  4. Y.-K. Seo, J.-H. Eom, Y.-W. Kim, Process-tolerant pressureless-sintered silicon carbide ceramics with alumina-yttria-calcia-strontia. J. Eur. Ceram. Soc. 38(2), 445–452 (2018)

    Article  CAS  Google Scholar 

  5. Seung Hoon Jang et al., “Effects of Y2O3–RE 2O3 (RE=Sm, Gd, Lu) additives on electrical and thermal properties of silicon carbide ceramics.” J. Am. Ceram. Soc. 99(1), 265–272 (2016)

    Article  CAS  Google Scholar 

  6. Young-Wook. Kim, Tae-Young. Cho, Kwang Joo Kim, “Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria.” J. Eur. Ceram. Soc. 35(15), 4137–4142 (2015)

    Article  CAS  Google Scholar 

  7. S. Ribeiro et al., Effect of temperature and heating rate on the sintering performance of SiC-Al2O3-Dy2O3 and SiC-Al2O3-Yb2O3 systems. Ceram. Int. 43(18), 16048–16054 (2017)

    Article  CAS  Google Scholar 

  8. Mostafa Bahaaddini et al., “Pressureless sintering of LPS-SiC (SiC-Al2O3-Y2O3) composite in presence of the B4C additive.” Ceram. Int. 45(10), 13536–13545 (2019)

    Article  CAS  Google Scholar 

  9. D. Ahmoye, D. Bucevac, V.D. Krstic, Mechanical properties of reaction sintered SiC-TiC composite. Ceram. Int. 44(12), 14401–14407 (2018)

    Article  CAS  Google Scholar 

  10. Bizhe Su et al., The effect of in situ synthesized AlN on densification of SiC ceramics by pressureless sintering. Ceram. Int. 41(10), 14172–14178 (2015)

    Article  CAS  Google Scholar 

  11. M. Khodaei, O. Yaghobizadeh, A.A. Shahraki, S. Esmaeeli, Investigation of the effect of Al2O3–Y2O3–CaO (AYC) additives on sinterability, microstructure and mechanical properties of SiC matrix composites: a review. Int. J. Refract. Met. H. 78, 9–26 (2018)

    Article  Google Scholar 

  12. Dong Feng et al., “Effect of oxygen content on the sintering behaviour and mechanical properties of SiC ceramics.” Ceram. Int. 45(18), 23984–23992 (2019)

    Article  CAS  Google Scholar 

  13. A.C. Santos, S. Ribeiro, “Liquid phase sintering and characterization of SiC ceramics.” Ceram. Int. 44(10), 11048–11059 (2018)

    Article  CAS  Google Scholar 

  14. R. Malik, Y.-H. Kim, Y.-W. Kim, “Effect of additive content on the mechanical and thermal properties of pressureless liquid-phase sintered SiC.” J. Asian. Ceram. Soc. 8(2), 448–459 (2020)

    Article  Google Scholar 

  15. Yong-Hyeon. Kim et al., “Mechanical and thermal properties of silicon carbide ceramics with yttria–scandia–magnesia.” J. Eur. Ceram. Soc. 39(2–3), 144–149 (2019)

    Article  CAS  Google Scholar 

  16. Tae-Young. Cho, Young-Wook. Kim, Kwang Joo Kim, “Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride.” J. Eur. Ceram. Soc. 36(11), 2659–2665 (2016)

    Article  CAS  Google Scholar 

  17. Sung Il Yun et al., “Fabrication and properties of macro-porous SiC using Al2O3–Y2O3–SiO2 as bonding additives.” Ceram. Int. 47(9), 11979–11988 (2021)

    Article  CAS  Google Scholar 

  18. Dusan Bucevac et al., “Toughening of SiC matrix with in-situ created TiB2 particles.” Ceram. Int. 36(7), 2181–2188 (2010)

    Article  CAS  Google Scholar 

  19. M. Khodaei, O. Yaghobizadeh, S.H. Naghavi Alhosseini, S. Esmaeeli, S.R. Mousavi, The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: a review. J. Eur. Ceram. Soc. 39, 2215–2231 (2019)

    Article  CAS  Google Scholar 

  20. Hanqin Liang et al., “The effect of powder bed on the liquid phase sintering of α-SiC.” Mater. Des. (1980–2015) 56, 1009–1013 (2014)

    Article  CAS  Google Scholar 

  21. EunJu Lee et al., Microstructure formation of porous silicon carbide ceramics during β-α phase transformation. Int. J. Refract. Metals. Hard. Mater. 65, 64–68 (2017)

    Article  CAS  Google Scholar 

  22. A. Malinge, A. Coupé, S. Jouannigot, Y. Le Petitcorps, R. Pailler, Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent. J. Eur. Ceram. Soc. 32–16, 4419–4426 (2012)

    Article  Google Scholar 

  23. N.P. Padture, B.R. Lawn, Toughness properties of a silicon carbide with an in situ induced heterogeneous grain structure. J. Am. Ceram. Soc. 77–10, 2518–2522 (1994)

    Article  Google Scholar 

  24. Chenran Li et al., “Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C.” Ceram. Int. 46(8), 10142–10146 (2020)

    Article  CAS  Google Scholar 

  25. Mahdi Khodaei et al., “Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites.” Int. J. Refract. Metals. Hard. Mater. 70, 19–31 (2018)

    Article  CAS  Google Scholar 

  26. J.C. Viala, P. Fortier, J. Bouix, Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide. J. Mater. Sci. 25–3, 1842–1850 (1990)

    Article  Google Scholar 

  27. Laleh Kheyrinia et al., “Fabrication of SiC bodies by optimized gel-casting method.” Int. J. Ref. Metals. Hard. Mater. 81, 225–232 (2019)

    Article  CAS  Google Scholar 

  28. M. Khodaei et al., “The effect of TiC additive with Al2O3-Y2O3 on the microstructure and mechanical properties of SiC matrix composites.” Adv. Ceram. Prog. 6(3), 15–24 (2020)

    Google Scholar 

  29. D. Foster, D.P. Thompson, The use of MgO as a densification aid for α-SiC. J. Eur. Ceram. Soc. 19, 2823–2831 (1999)

    Article  CAS  Google Scholar 

  30. A. Gubernat, L. Stobierski, P. Labaj, Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 27, 781–789 (2007)

    Article  CAS  Google Scholar 

  31. Meng Liu et al., “Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering.” Ceram. Int. 45(16), 19771–19776 (2019)

    Article  CAS  Google Scholar 

  32. Giuseppe Magnani et al., “Solid-state pressureless sintering of silicon carbide below 2000 C.” J. Eur. Ceram. Soc. 34(15), 4095–4098 (2014)

    Article  CAS  Google Scholar 

  33. Mahdi Khodaei et al., “Improvement toughness of SiC ceramic by adding Cr2O3 and annealing process.” J. Aust. Ceram. Soc. 57(4), 1–10 (2021)

    Article  Google Scholar 

  34. Sara Ahmadbeygi et al., Fabrication of SiC body by microwave sintering process. J. Mater. Sci. Mater. Electron. 28(7), 5675–5685 (2017)

    Article  CAS  Google Scholar 

  35. Kyeong Sik Cho, Kwang Soon Lee, “Microstructure and mechanical properties of spark-plasma-sintered SiC-TiC composites.” Key engineering materials (Trans Tech Publications Ltd Vol. 287, Freienbach, 2005), pp. 335–339

    Google Scholar 

  36. Jingkun Li et al., Silicon carbide hot pressing sintered by magnesium additive: microstructure and sintering mechanism. J. Mater. Res. Technol. 9(1), 520–529 (2020)

    Article  CAS  Google Scholar 

  37. C. Lorrette, A. Réau, L. Briottet, Mechanical properties of nanostructured silicon carbide consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 33(1), 147–156 (2013)

    Article  CAS  Google Scholar 

  38. D.O. Moskovskikh et al., Silicon carbide ceramics: Mechanical activation, combustion and spark plasma sintering. Ceram. Int. 42(11), 12686–12693 (2016)

    Article  CAS  Google Scholar 

  39. J. GuillardFrançois et al., “Densification of SiC by SPS-effects of time, temperature and pressure.” J. Eur. Ceram. Soc. 27(7), 2725–2728 (2007)

    Article  Google Scholar 

  40. Giuseppe Magnani, Giuliano Sico, Alida Brentari, “Two-step pressureless sintering of silicon carbide-based materials.” Advances in science and technology, vol. 89 (Trans Tech Publications Ltd., Freienbach, 2014), pp. 70–75

    Google Scholar 

  41. Hanqin Liang et al., “The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC.” J. Eur. Ceram. Soc. 34(12), 2865–2874 (2014)

    Article  CAS  Google Scholar 

  42. Yihua Huang et al., “Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering.” J. Eur. Ceram. Soc. 38(13), 4329–4337 (2018)

    Article  CAS  Google Scholar 

  43. Shixue Guan et al., “Production of silicon carbide reinforced molybdenum disilicide composites using high-pressure sintering.” Ceram. Int. 46(15), 23643–23650 (2020)

    Article  CAS  Google Scholar 

  44. Eun Ju Lee et al., “Densification behavior of high purity SiC by hot pressing.” Ceram. Int. 40(10), 16389–16392 (2014)

    Article  CAS  Google Scholar 

  45. Giuseppe Magnani et al., “Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method.” Ceram. Int. 40(1), 1759–1763 (2014)

    Article  CAS  Google Scholar 

  46. Y. Hui, Z. Lingjie, G. Xingzhong, Z. Xiaoyi, F. Xiaojian, “Pressureless sintering of silicon carbide ceramics containing zirconium diboride.” Ceram. Int. 37, 2031–2035 (2011)

    Article  Google Scholar 

  47. Qisong Li et al., “Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics.” Ceram. Int. 41(10), 13547–13552 (2015)

    Article  CAS  Google Scholar 

  48. Mahdi Khodaei et al., “The effect of TiO2 additive on the electrical resistivity and mechanical properties of pressureless sintered SiC ceramics with Al2O3-Y2O3.” Int. J. Refract. Metals. Hard. Mater. 76, 141–148 (2018)

    Article  CAS  Google Scholar 

  49. Mahdi Khodaei et al., “The effect of Cr2O3 additions on sinterability and mechanical properties of liquid-phase sintered SiC ceramics.” J. Alloys. Compd. 829, 154501 (2020)

    Article  CAS  Google Scholar 

  50. Tae-Young. Cho et al., “Electrical and mechanical properties of pressureless sintered SiC-Ti2CN composites.” J. Eur. Ceram. Soc. 38(9), 3064–3072 (2018)

    Article  CAS  Google Scholar 

  51. Hadi Dehghani et al., “The effect of AlN-Y2O3 compound on properties of pressureless sintered SiC ceramics-a review.” Int. J. Refract. Metals. Hard. Mater. 95, 105420 (2020)

    Article  Google Scholar 

  52. Mahdi Khodaei et al., “The effect of TiO2 additive on sinterability and properties of SiC-Al2O3-Y2O3 composite system.” Ceram. Int. 44(14), 16535–16542 (2018)

    Article  CAS  Google Scholar 

  53. Eszter Bódis et al., “Spark plasma sintering of graphene reinforced silicon carbide ceramics.” Ceram. Int. 43(12), 9005–9011 (2017)

    Article  Google Scholar 

  54. Mahdi Khodaei et al., “The effect of nano-TiO2 additions on the densification and mechanical properties of SiC-matrix composite.” Ceram. Int. 46(5), 6477–6483 (2020)

    Article  CAS  Google Scholar 

  55. Hanqin Liang et al., “The relationship between microstructure and flexural strength of pressureless liquid phase sintered SiC ceramics oxidized at elevated temperatures.” Ceram. Int. 42(11), 13256–13261 (2016)

    Article  CAS  Google Scholar 

  56. M. Petrus, J. Wozniak, A. Jastrzębska, M. Kostecki, T. Cygan, A. Olszyna, The effect of the morphology of carbon used as a sintering aid on the sinterability of silicon carbide. Ceram. Int. 44(6), 7020–7025 (2018)

    Article  CAS  Google Scholar 

  57. Chen Chen et al., “Preferentially oriented SiC/graphene composites for enhanced mechanical and thermal properties.” Ceram. Int. 46(14), 23173–23179 (2020)

    Article  CAS  Google Scholar 

  58. Q. Li, Y. Zhang, H. Gong, H. Sun, W. Li, Enhanced fracture toughness of pressureless-sintered SiC ceramics by addition of graphene. J. Mater. Sci. Technol. 32–7, 633–638 (2016)

    Article  Google Scholar 

  59. X. Guo, R. Wang, P. Zheng, Z. Lu, H. Yang, Pressureless sintering of multilayer graphene reinforced silicon carbide ceramics for mechanical seals. Adv. Appl. Ceram. 118–7, 409–417 (2019)

    Article  Google Scholar 

  60. Ying-Nan. Cao et al., Preparation of zirconium diboride ultrafine hollow spheres by a combined sol–gel and boro/carbothermal reduction technique. J. Sol-gel. Sci. Technol. 72(1), 130–136 (2014)

    Article  CAS  Google Scholar 

  61. A. Malinge, A. Coupé, Y. Le Petitcorps, R. Pailler, Pressureless sintering of beta silicon carbide nanoparticles. J. Eur. Ceram. Soc. 32, 4393–4400 (2012)

    Article  CAS  Google Scholar 

  62. H.Z. Wang, L. Gao, J.K. Guo, Effect of nanoscale SiC particles on the microstructure of Al2O3 ceramics. Ceram. Int. 26(4), 391–396 (2000)

    Article  CAS  Google Scholar 

  63. A. Razmjoo, H.R. Baharvandi, N. Ehsani, The effect of graphene addition on the properties of SiC ceramics—a review. J. Aust. Ceram. Soc. 58, 437–460 (2022)

    Article  CAS  Google Scholar 

  64. S. Prochazka, R. Scanlan, Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc. 58(1–2), 72 (1975)

    Article  CAS  Google Scholar 

  65. G. Wroblewska, E. Nold, F. ThLimmler, The role of boron and carbon additions on the microstructural development of pressureless sintered silicon carbide. Ceram. Int. 16, 201–209 (1990)

    Article  CAS  Google Scholar 

  66. K. Raju, D.H. Yoon, Sintering additives for SiC based on the reactivity: a review. Ceram. Int. 42–16, 17947–17962 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Baharvandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmjoo, A., Baharvandi, H.R. & Ehsani, N. Pressureless sintering of SiC matrix composites reinforced with nano-β-SiC and graphene. J. Korean Ceram. Soc. 59, 729–741 (2022). https://doi.org/10.1007/s43207-022-00213-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00213-0

Keywords

Navigation