Skip to main content
Log in

Processing and properties of nano-hBN-added glass/ceramic composites for low-temperature co-fired ceramic applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

LTCC applications require densification at temperatures lower than 950 °C to allow co-firing with metal electrodes, lower dielectric constant to increase signal transmission speed, a thermal expansion coefficient matched to Si for reliability and higher thermal conductivity to dissipate heat. For this purpose, (SiO2–Al2O3–CaO)-based glass (50–60 wt%)/ceramic (Al2O3 or mullite) composites with nano-hBN (0–10 wt%) addition were investigated. Al2O3 was replaced by mullite to decrease dielectric constant and to match thermal expansion coefficient to Si, and hBN was incorporated to increase thermal conductivity and to decrease dielectric constant. Densification at temperatures ≤ 900 °C was easily achieved for all compositions due to viscous sintering of the glass matrix. hBN did not react chemically with crystalline and amorphous phases, which effectively decreased dielectric constant and increased thermal conductivity. Hence, both mullite and nano-hBN strongly improved dielectric and thermal properties required for the LTCC applications. Dense mullite/glass (55 wt%) base composite with 10 wt% hBN addition was successfully engineered and had comparable dielectric and thermal properties (i.e., 2.3 gcm−3 after sintering at 900 °C, dielectric constant (loss) = 5.13 (0.003) at 5 MHz, thermal conductivity = 1.91 Wm−1 K−1 at 25 °C, and thermal expansion coefficient for the base composite = 4.75 ppm°C−1) with respect to the commercial LTCC products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.J. Cava, Dielectric materials for applications in microwave communications. J Mater Chem 11, 54–62 (2001). https://doi.org/10.1039/b003681l

    Article  CAS  Google Scholar 

  2. K. Niwa, N. Kamehara, H. Yokoyama, K. Kurihara, Multilayer ceramic circuit board with copper conductor. Am Ceram Soc 19, 41–48 (1986)

    Google Scholar 

  3. G. Chen, X. Liu, Fabrication, characterization and sintering of glass-ceramics for low-temperature co-fired ceramic substrates. J Mater Sci Mater Electron 15, 595–600 (2004). https://doi.org/10.1023/B:JMSE.0000036038.51510.fb

    Article  CAS  Google Scholar 

  4. D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc 33, 87–93 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.002

    Article  CAS  Google Scholar 

  5. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: A review. Int Mater Rev 53, 57–90 (2008). https://doi.org/10.1179/174328008X277524

    Article  CAS  Google Scholar 

  6. D. Wang, Y. Fu, C. Zhang, H. Zhou, Fabrication of low dielectric constant film based on CaO–B2O3–SiO2 glass/mullite composites for LTCC application. J Mater Sci Mater Electron 31, 8884–8892 (2020). https://doi.org/10.1007/s10854-020-03422-7

    Article  CAS  Google Scholar 

  7. C.C. Chiang, S.F. Wang, Y.R. Wang, Y.F. Hsu, Characterizations of CaO-B2O3-SiO2 glass-ceramics: Thermal and electrical properties. J Alloys Compd 461, 612–616 (2008). https://doi.org/10.1016/j.jallcom.2007.07.073

    Article  CAS  Google Scholar 

  8. X. Luo, L. Ren, W. Xie et al., Microstructure, sintering and properties of CaO–Al2O3–B2O3–SiO2 glass/Al2O3 composites with different CaO contents. J Mater Sci Mater Electron 27, 5446–5451 (2016). https://doi.org/10.1007/s10854-016-4448-y

    Article  CAS  Google Scholar 

  9. H. Zhu, R. Fu, S. Agathopoulos et al., Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2 glasses and glass-ceramics for LTCC applications. Ceram Int 44, 10147–10153 (2018). https://doi.org/10.1016/j.ceramint.2018.03.003

    Article  CAS  Google Scholar 

  10. L. Ren, M. Zhang, H. Zhou, Application of composite binders in the fabrication of LTCC green tape based on the borosilicate glass/Al2O3 system with optimized Ca/Mg ratios. Ceram Int 46, 25979–25986 (2020). https://doi.org/10.1016/j.ceramint.2020.07.087

    Article  CAS  Google Scholar 

  11. G. R. Bhimanapati, N. R. Glavin, J. A. Robinson, 2D Boron Nitride: Synthesis and Applications, 1st ed. Elsevier Inc. (2016)

  12. T.H. Chiang, T.E. Hsieh, A study of encapsulation resin containing hexagonal boron nitride (hBN) as inorganic filler. J Inorg Organomet Polym Mater 16, 175–183 (2006). https://doi.org/10.1007/s10904-006-9037-8

    Article  CAS  Google Scholar 

  13. www.makeitfrom.com/materialproperties/Hexagonal-Boron-Nitride-BN. Accessed 26 Jan 2020

  14. R. H. Cary, Avionic Radome Materials: Advisory group for aerospace research and development. France (1974)

  15. O. Bilaç, C. Duran, Al2O3/glass/hBN composites with high thermal conductivity and low dielectric constant for low temperature cofired ceramic applications. J Asian Ceram Soc 9, 260–267 (2021). https://doi.org/10.1080/21870764.2020.1864897

    Article  Google Scholar 

  16. Q. Li, D. Cai, Z. Yang et al., Thermal properties and thermal shock resistance of BAS-BN composite ceramics. Ceram Int 45, 8181–8187 (2019). https://doi.org/10.1016/j.ceramint.2019.01.120

    Article  CAS  Google Scholar 

  17. H. Jin, Z. Shi, X. Li et al., Effect of rare earth oxides on the microstructure and properties of mullite/hBN composites. Ceram Int 43, 3356–3362 (2017). https://doi.org/10.1016/j.ceramint.2016.11.179

    Article  CAS  Google Scholar 

  18. G.M. Dursun, C. Duran, Glass alumina composites for functional and structural applications. Ceram Int 45, 12550–12557 (2019). https://doi.org/10.1016/j.ceramint.2019.03.194

    Article  CAS  Google Scholar 

  19. N. Ecebaş, G.M. Dursun, A.H. Yeşilova, C. Duran, Gel casting of mullite for radome applications. Int J Appl Ceram Technol 17, 264–273 (2020). https://doi.org/10.1111/ijac.13269

    Article  CAS  Google Scholar 

  20. J. F. Shackelford, R. H. Doremus, Ceramic and glass materials: Structure, properties and processing (2008)

  21. D. G. Burks, Radomes in Antenna Engineering Handbook: 4th New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto (2007)

  22. Q. Li, D. Cai, Z. Yang et al., Effects of BN on the microstructural evolution and mechanical properties of BAS-BN composites. Ceram Int 45, 1627–1633 (2019). https://doi.org/10.1016/j.ceramint.2018.10.039

    Article  CAS  Google Scholar 

  23. W.S. Cho, Z.H. Piao, K.J. Lee et al., Microstructure and mechanical properties of AlN-hBN based machinable ceramics prepared by pressureless sintering. J Eur Ceram Soc 27, 1425–1430 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.044

    Article  CAS  Google Scholar 

  24. W. Pabst, E. Gregorová, E. Rambaldi, M.C. Bignozzi, Effective elastic constants of plagioclase feldspar aggregates in dependence of the anorthite content - A concise review. Ceram Silikaty 50, 326–330 (2015)

    Google Scholar 

  25. http://physics.bu.edu/~duffy/semester2/c08_dielectric_constant.html. Accessed 26 Aug 2021

  26. S.A.M. Abdel-Hameed, A.A. El-kheshen, Thermal and chemical properties of diopside-wollastonite glass-ceramics in the SiO2-CaO-MgO system from raw materials. Ceram Int 29, 265–269 (2003). https://doi.org/10.1016/S0272-8842(02)00114-1

    Article  CAS  Google Scholar 

  27. S.J. Penn, N.M.N. Alford, A. Templeton et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J Am Ceram Soc 80, 1885–1888 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03066.x

    Article  CAS  Google Scholar 

  28. Y. Zhang, C. Jia, High-performance cyanate ester composites with plasma-synthesized MgSiO3-SiO2-hBN powders for thermally conductive and dielectric properties. Ceram Int 45, 6491–6498 (2019). https://doi.org/10.1016/j.ceramint.2018.12.138

    Article  CAS  Google Scholar 

  29. S. Wang, D. Jia, Z. Yang et al., Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting. Ceram Int 39, 4231–4237 (2013). https://doi.org/10.1016/j.ceramint.2012.11.005

    Article  CAS  Google Scholar 

  30. Yoshihiko Imanaka, multilayered low temperature cofired ceramics (LTCC) Technology, Japan (2005)

  31. D.M. Mattox, S.R. Gurkovich, A.M.K. Olenick, Low dielectric constant, alumina-compatible, Co-Fired multilayer substrate. Ceram Eng Sci 9, 1567–1578 (1988)

    CAS  Google Scholar 

  32. W.D. Kingery, Introduction to ceramics. J. Electrochem. Soc. 124(3), 152C (1977)

    Article  Google Scholar 

  33. Ferro Ceramic INC. http://www.ferroceramic.com/mullite_table.htm. Accessed 30 Aug 2021

  34. V.M.F. Marques, D.U. Tulyaganov, S. Agathopoulos et al., Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts. J Eur Ceram Soc 26, 2503–2510 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.055

    Article  CAS  Google Scholar 

  35. D.R. Lide, CRC handbook of chemistry and physics (CRC Press, Washington, 2003)

    Google Scholar 

  36. U.C. Sleight, Ceramic substrates for microelectronic packaging. Annu Rev Mater Sci 17, 323–340 (1987)

    Article  Google Scholar 

  37. X. Luo, L. Ren, Y. Xia et al., Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application. Ceram Int 43, 6791–6795 (2017). https://doi.org/10.1016/j.ceramint.2017.02.096

    Article  CAS  Google Scholar 

  38. I.J. Induja, P. Abhilash, S. Arun et al., LTCC tapes based on Al2O3-BBSZ glass with improved thermal conductivity. Ceram Int 41, 13572–13581 (2015). https://doi.org/10.1016/j.ceramint.2015.07.152

    Article  CAS  Google Scholar 

  39. Heraeus, Commercial LTCC Data Sheet. https://www.heraeus.com/%0Amedia/media/het/doc_het/products_and_solu%0Ations_het_documents/thick_film/thick_film_data_%0Asheets/passive_components/ltcc/LTCC_Materials_%0AX200.pdf. Accessed 30 Aug 2021

  40. Ferro, LTCC Data Sheet. https://www.etsmtl.ca/Unites-de-recherche%0A/LTCC/Services-offerts/Ferro_A6M.pdf. Accessed 30 Aug 2021

  41. Kyocera, LTCC Data Sheet. https://global.kyocera.com/prdct/semicon/material/. Accessed 30 Aug 2021

  42. Micro Systems Engineering GmbH (MSE) Data Sheet. https://www.mst.com/%0Amsegmbh/products_services/substrates/ltcc/ltcc_%0Aproperties/index.html. Accessed 30 Aug 2021

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cihangir Duran.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical statement

No animal or human studies were carried out by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilaç, O., Dursun, G.M. & Duran, C. Processing and properties of nano-hBN-added glass/ceramic composites for low-temperature co-fired ceramic applications. J. Korean Ceram. Soc. 59, 383–392 (2022). https://doi.org/10.1007/s43207-021-00185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00185-7

Keywords

Navigation