Skip to main content
Log in

Study of low-fire processing, phase constitution, and dielectric properties for LBS glass-doped NLNT ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this study was to synthesize a low-firing ceramic, namely Li2O–B2O3–SiO2 (LBS) glass-doped 0.35Na0.5Nd0.5TiO3–0.65Li0.5Nd0.5TiO3 (NLNT), with desired properties including a high dielectric constant (ɛr), high quality factor (× f), and near-zero temperature coefficient of resonant frequency (τf). The NLNT ceramic was synthesized using the solid-state reaction method, and XRD analysis confirmed the presence of a single perovskite phase in all NLNT + x wt% LBS (x = 0, 2, 3, 4, 5) ceramic samples. The LBS glass demonstrated excellent wetting behavior on the NLNT ceramic, ensuring effective densification at low sintering temperatures. The grain size, bulk density, densification temperature, and microwave dielectric properties were influenced by the doping level of LBS glass. Ultimately, NLNT + 4 wt% LBS glass sample, sintered at 950 °C, exhibited favorable microwave dielectric properties: ɛr = 110.9, × f = 2,065 GHz, and τf = + 4.6 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H. Yang, Y. Wang, X. Zhang, M. Xing, E. Li, L. Chai, Crystal structure, phase transition, vibrational spectra, and microwave dielectric characteristics of Ta5+ ionic substituted Co0.5Ti0.5NbO4 ceramics. Ceram. Int. 48, 648–655 (2022)

    CAS  Google Scholar 

  2. T. Xia, B. Huang, F. Shang, G. Chen, Synthesis and microwave dielectric characteristics of new ultra-low firing Li1.6Mn2.2(MoO4)3 ceramics. J. Mater. Sci. 57, 14699–14705 (2022)

    CAS  Google Scholar 

  3. S. Li, C. Li, M. Mao, K. Song, Y. Iqbal, A. Khesro, S.S. Faouri, Z. Lu, B. Liu, S. Sun, D. Wang, High × f values of Zn-Ni co-modified LiMg0.9Zn0.1−xNixPO4 microwave dielectric ceramics for 5G/6G LTCC modules. J. Eur. Ceram. Soc. 42, 5684–5690 (2022)

    CAS  Google Scholar 

  4. W.S. Kim, E.S. Kim, K.H. Yoon, Effects of Sm3+ substitution on dielectric properties of Ca1−xSm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc. 82, 2111–2115 (1999)

    CAS  Google Scholar 

  5. I.S. Kim, W.H. Jung, Y. Inaguma, T. Nakamura, M. Itoh, Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system [(1−x)La2/3TiO3xCaTiO3 (0.1 ≤ x ≤ 0.96)]. Mater. Res. Bull. 30, 307–316 (1995)

    CAS  Google Scholar 

  6. Z. Xiong, B. Tang, C. Yang, C. Yuan, S. Zhang, Different additives doped Ca–Nd–Ti Microwave Dielectric ceramics with distorted oxygen octahedrons and high Q × f value. ACS Omega 3, 11033–11040 (2018)

    CAS  Google Scholar 

  7. Z. Xiong, B. Tang, C.T. Yang, S.R. Zhang, Highly enhanced Q × f value of Ca0.61Nd0.26TiO3 ceramics with SnO2 additive. IOP Conf. Ser. Mater. Sci. Eng. 479, 012079 (2019)

    CAS  Google Scholar 

  8. Z. Xiong, B. Tang, F. Luo, H. Yang, X. Zhang, C. Yang, Z. Fang, S. Zhang, Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. J. Alloy Compd. 835, 155249 (2020)

    CAS  Google Scholar 

  9. Z. Xiong, X. Zhang, B. Tang, C. Yang, Z. Fang, S. Zhang, Characterization of structure and properties in CaO–Nd2O3–TiO2 microwave dielectric ceramic modified by Al2O3. Mater. Charact. 176, 111108 (2021)

    CAS  Google Scholar 

  10. Z. Xiong, X. Zhang, Z. Fang, W. Wu, L. Li, B. Tang, S. Zhang, Characterization of structural and electrical properties of Ca0.61Nd0.26TiO3 ceramic tailored by complex ions (Al0.5Nb0.5)4+. J. Alloy Compd. 899, 163234 (2022)

    CAS  Google Scholar 

  11. Y. Masashi, H. Naoki, T. Takahiro, S. Akira, Structure and dielectric properties of (Ca1−xNd2x/3)TiO3. jpn. J. Appl. Phys. 36, 6818 (1997)

    Google Scholar 

  12. T. Hisakazu, B. Yoko, E. Kenichi, O. Yasuhiko, S. Kenichi, K. Kazuhiko, N. Shoichi, Dielectric characteristics of (A1/21+A1/23+)TiO3 ceramics at microwave frequencies. Jpn. J. Appl. Phys. 30, 2339 ( 1991)

    Google Scholar 

  13. Z. Fang, B. Tang, E. Li, S. Zhang, High-Q microwave dielectric properties in the Na0.5Sm0.5TiO3+Cr2O3 ceramics by one synthetic process. J. Alloy Compd. 705, 456–461 (2017)

    CAS  Google Scholar 

  14. L. Zhou, B. Tang, S. Zhang,  Influence of Sn-substitution on microstructure and microwave dielectric properties of Na1/2Nd1/2TiO3 ceramics. J. Mater. Sci. Mater. Electron 26, 424–428 (2015)

    CAS  Google Scholar 

  15. J. Ma, Y. Xiong, X. Zhang, Z. Xiong, B. Tang, Studies of phase transitions, Raman spectra and microwave dielectric properties of perovskite-structured (Na1–xLix)0.5Nd0.5TiO3 ceramics. J. Mater. Sci. Mater. Electron. 34, 1039 (2023)

    CAS  Google Scholar 

  16. Z. Xiong, X. Zhang, W. Wu, L. Li, B. Tang, Preparation and characterization of the temperature-stable CaO–Li2O–Nd2O3–TiO2 microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 34, 610 (2023)

    CAS  Google Scholar 

  17. Z. Fang, B. Tang, F. Si, S. Zhang, Low temperature sintering of high permittivity Ca–Li–Nd–Ti microwave dielectric ceramics with BaCu(B2O5) additives. J. Alloy Compd. 693, 843–852 (2017)

    CAS  Google Scholar 

  18. S. Liu, B. Tang, M. Zhou, P. Zhao, Q. Xiang, X. Zhang, Z. Fang, S. Zhang, Microwave dielectric characteristics of high permittivity Ca0.35Li0.25Nd0.35Ti1−x(Zn1/3Ta2/3)xO3 ceramics x = 0.00–0.12. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.179

    Article  Google Scholar 

  19. D. Zhang, H. Hao, Y. Luo, Z. Yao, M. Cao, H. Liu, Effect of ZnO doping on the microstructure and microwave dielectric properties of 0.2CaTiO3–0.8(Li0.5Sm0.5)TiO3 ceramics. Ceram. Int. 48, 22726–22732 (2022)

    CAS  Google Scholar 

  20. H. Sun, Pai, T. Nakamura, Y.J. Shan, Y. Inaguma, M. Itoh, High temperature quantum paraelectricity in perovskite-type titanates Ln1/2Na1/2TiO3 (ln = La, Pr, Nd, Sm, Eu, Gd and Tb). Ferroelectrics. 200, 93–107 (1997)

    Google Scholar 

  21. W. Lou, M. Mao, K. Song, K. Xu, B. Liu, W. Li, B. Yang, Z. Qi, J. Zhao, S. Sun, H. Lin, Y. Hu, D. Zhou, D. Wang, I.M. Reaney, Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 42, 2820–2826 (2022)

    CAS  Google Scholar 

  22. H. Yang, L. Chai, Y. Wang, M. Xing, Y. Chen, E. Li, Matching correlation study of titanium-based ceramics with glass based on dissolution characteristics. J. Eur. Ceram. Soc. 42, 5778–5788 (2022)

    CAS  Google Scholar 

  23. Z. Xiong, Y. Han, X. He, Q. Lei, R. Zhao, W. Huang, X. Zhang, W. Wu, L. Li, B. Tang, Study of BaO–Nd2O3–TiO2 ceramics doped with Li2O–ZnO–B2O3 glass for LTCC technology. J. Mater. Sci. Mater. Electron. 34, 921 (2023)

    CAS  Google Scholar 

  24. E. Li, S. Duan, S. Sun, H. Li, Y. Mi, X. Zhou, S. Zhang, Influence of Li–B–Si additions on the sintering and microwave dielectric properties of Ba–Nd–Ti ceramics. J. Electron. Mater. 42, 3519–3523 (2013)

    CAS  Google Scholar 

  25. M. Long, B. Tang, S. Zhang, S. Yu, Influence of Ba–Zn–B additives on the sintering behavior and dielectric properties of BaNd2Ti4O12 ceramics. Mater. Lett. 68, 486–489 (2012)

    CAS  Google Scholar 

  26. Z. Xiong, B. Tang, X. Zhang, C. Yang, Z. Fang, S. Zhang, Low-fire processing and microwave dielectric properties of LB glass-doped Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 ceramic. J. Am. Ceram. Soc 104, 1726–1739 (2021)

    CAS  Google Scholar 

  27. C.H. Wei, J.H. Jean, Low-fire Processing (Ca1−xNd2x/3)TiO3 microwave ceramics. J. Am. Ceram. Soc. 86, 93–98 (2003)

    CAS  Google Scholar 

  28. X. Gao, Z. Xiong, X. Zhang, B. Tang, High dielectric constant perovskite ceramic sintered at low temperature with La–Li–Zn–B glass for LTCC applications. J. Mater. Sci. Mater. Electron. 34, 1540 (2023)

    CAS  Google Scholar 

  29. Y. Chen, S. Zhang, E. Li, N. Niu, H. Yang, Sintering characteristic and microwave dielectric properties of 0.45Ca0.6Nd0.267TiO3–0.55Li0.5Nd0.5TiO3 ceramics with La2O3–B2O3–ZnO additive. Appl. Phys. A 124, 188 (2018)

    CAS  Google Scholar 

  30. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Tech. 8, 402–410 (1960)

    Google Scholar 

  31. Y. Chen, S. Zhang, E. Li, M. Zou, S. Duan, Investigation of low-temperature sintering mechanism on BaO–Nd2O3–TiO2 dielectric ceramics with Li2O–B2O3–SiO2 and BaO–ZnO–B2O3 glasses. Phys. Status Solidi A ,215, 1700938 (2018)

    Google Scholar 

  32. H. Yang, E. Li, H. Yang, H. He, R.S. Zhang, Synthesis of Zn0.5Ti0.5NbO4 microwave dielectric ceramics with Li2O–B2O3–SiO2 glass for LTCC application. Int. J. Appl. Glass Sci. 9, 392–402 (2018)

    CAS  Google Scholar 

  33. M.-. Hou, G.-. Chen, Y. Bao, Y. Yang, C.-. Yuan, Low-temperature firing and microwave dielectric properties of LBS glass-added Li2ZnTi3O8 ceramics with TiO2. J. Mater. Sci. Mater. Electron. 23, 1722–1727 (2012)

    CAS  Google Scholar 

  34. E.A. Il’ina, S.V. Pershina, B.D. Antonov, A.A. Pankratov, E.G. Vovkotrub, The influence of the glass additive Li2O–B2O3–SiO2 on the phase composition, conductivity, and microstructure of the Li7La3Zr2O12. J. Alloy Compd. 765, 841–847 (2018)

    Google Scholar 

  35. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    CAS  Google Scholar 

  36. J.H. Ahn, J.H. Lee, S.H. Hong, N.M. Hwang, D.Y. Kim, Effect of the liquid-forming additive content on the kinetics of abnormal grain growth in alumina. J. Am. Ceram. Soc. 86, 1421–1423 (2003)

    CAS  Google Scholar 

  37. S. Lei, H. Fan, W. Chen, Z. Liu, M. Li, Structure, Microwave dielectric properties, and novel low-temperature sintering of xSrTiO3–(1−x)LaAlO3 ceramics with ltcc application. J. Am. Ceram. Soc. 100, 235–246 (2017)

    CAS  Google Scholar 

  38. J. Petzelt, Dielectric grain-size effect in high-permittivity ceramics. Ferroelectrics 400, 117–134 (2010)

    CAS  Google Scholar 

  39. Z. Fang, H. Yang, H. Yang, Z. Xiong, X. Zhang, P. Zhao, B. Tang, Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int. 47, 21388–21397 (2021)

    CAS  Google Scholar 

  40. Y.W. Chen, E.Z. Li, N. Niu, M.Y. Zou, S.X. Duan, S.R. Zhang, Effects of La2O3–B2O3–ZnO additions on the low temperature sintering and microwave dielectric properties of (Ca0.61La0.26)TiO3 ceramics. IOP Conf. Ser. Mater. Sci. Eng. 170, 012031 (2017)

    Google Scholar 

  41. E. Li, N. Niu, S. Duan, Y. Yuan, B. Tang, Influence of La–B–Zn glass on the sintering and microwave dielectric properties of Ca–Nd–Ti ceramics. J. Mater. Sci. Mater. Electron. 27, 3164–3169 (2016)

    CAS  Google Scholar 

  42. Y. Gu, J. Huang, Q. Li, X. Ning, L. Li, X. Li, A novel low-fired and high-εr microwave dielectric ceramic BaCu(B2O5)-added 0.6Ca3/5La4/15TiO3–0.4Li1/2Nd1/2TiO3. J. Mater. Sci. Mater. Electron. 29, 11378–11383 (2018)

    CAS  Google Scholar 

  43. K. Yan, T. Karaki, M. Adachi, Low-temperature sintering of high permittivity Ca0.8Sr0.2TiO3–Li0.5Sm0.5TiO3 microwave dielectric ceramics with B2O3–CuO addition. Jpn. J. Appl. Phys. 48, 09KE01 (2009)

    Google Scholar 

  44. F. Gu, G. Chen, C. Yuan, C. Zhou, T. Yang, Y. Yang, Low temperature sintering and microwave dielectric properties of 0.2Ca0.8Sr0.2TiO3–0.8Li0.5Sm0.5TiO3 ceramics with BaCu(B2O5) additive and TiO2 dopant. Mater. Res. Bull. 61, 245–251 (2015)

    CAS  Google Scholar 

  45. Y. Gu, J. Huang, Y. Wang, D. Sun, Q. Li, F. Li, H. Xu, Low temperature firing of CaO–Li2O–Sm2O3–TiO2 ceramics with BaCu(B2O5) addition  Solid State Commun. 149, 555–558 (2009)

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Key Research and Development Program of Sichuan Province (Grant No. 2022YFG0226) and the Scientific Research Foundation of CUIT (Grant No. KYTZ202179).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. JM and ZX: Material preparation, data collection, and analysis were performed. JM: The first draft of the manuscript was written and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhe Xiong.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xiong, Z., Xiong, Y. et al. Study of low-fire processing, phase constitution, and dielectric properties for LBS glass-doped NLNT ceramics. J Mater Sci: Mater Electron 34, 2071 (2023). https://doi.org/10.1007/s10854-023-11556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11556-7

Navigation