Skip to main content

Advertisement

Log in

Wollastonite coating on zirconia substrate by room temperature spray processing

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Dental implant materials must exhibit excellent mechanical and biochemical properties, such as high strength, corrosion resistance, nontoxicity, biocompatibility, and phase stability. Zirconia implants manufactured by CAD/CAM machining and the sintering process have low bone-bonding ability owing to bioinertness and low surface roughness, resulting in prolonged implantation period or implant debinding. In this study, bioactive wollastonite was coated on bioinert zirconia substrates by room temperature spray processing, and the microstructural and characteristics of the coated layers were investigated. Wollastonite powder for the coatings was prepared through calcination and pulverization processes. Homogeneous wollastonite coatings on dense zirconia substrates were obtained via the aforementioned room temperature spray processing. Notably, the phase composition and microstructural characteristics of wollastonite-coating layers were dependent on the number of coating cycles. The wollastonite-coating layers showed a uniform thickness and tough surface microstructure, depending on the number of deposition cycles and coating thickness. In vitro tests of the coated specimens in an SBF solution at pH 7.4 for 14 days revealed that the biological activity of the zirconia substrate changed depending on the thickness and surface morphology of the coatings. As a result, the wollastonite coating surfaces exhibit superior bioactivity compared with that of the original zirconia substrate. This is owing to the bioactive wollastonite phase and high surface roughness of the coated layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Denry, J.R. Kelly, State of the art of zirconia for dental applications. Dent. Mater. 24(3), 299–307 (2008)

    Article  CAS  Google Scholar 

  2. R.B. Osman, M.V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel) 8(3), 932–958 (2015)

    Article  CAS  Google Scholar 

  3. Z. Özkurt, E. Kazazoğlu, Zirconia dental implants: a literature review. J. Oral. Implantol. 37(3), 367–376 (2011)

    Article  Google Scholar 

  4. R.B. Osman, M.V. Swain, M. Atieh, S. Ma, W. Duncanl, Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial. Clin. Oral. Implant. Res. 25(12), 1366–1377 (2014)

    Article  Google Scholar 

  5. M. Hisbergues, S. Vendeville, P. Vendeville, Zirconia: established facts and perspectives for a biomaterial in dental implantology. J. Biomed. Mater. Res. Part B Appl. Biomater. 88(3), 519–529 (2009)

    Article  Google Scholar 

  6. D.S. Kim, J.K. Lee, Sintered characteristics of 3 mole% yttria-stabilized zirconia polycrystals (3Y-TZP) implants manufactured by slip-casting and computer aided design/computer aided manufacturing (CAD/CAM). J. Nanosci. Nanotechnol. 21(7), 3877–3881 (2021)

    Article  CAS  Google Scholar 

  7. P.C. Guess, W. Att, J.R. Strub, Zirconia in fixed implant prosthodontics. Clin. Implant. Dent. Relat. Res. 14(5), 633–645 (2012)

    Article  Google Scholar 

  8. Y. Zhang, B.R. Lawn, Fatigue sensitivity of Y-TZP to microscale sharp-contact flaws. J. Biomed. Mater. Res. B Appl. Biomater. 72(2), 388–392 (2005)

    Article  Google Scholar 

  9. F.H. Schünemann, M.E. Galárraga-Vinueza, R. Magini, M. Fredel, F. Silva, J.C.M. Souza, Y. Zhang, B. Henriques, Zirconia surface modifications for implant dentistry. Mater. Sci. Eng. C 98(5), 1294–1305 (2019)

    Article  Google Scholar 

  10. S. Roedel, J.C.M. Souza, F.S. Silva, J. Mesquita-Guimarães, M.C. Fredel, B. Henriques, Optimized route for the production of zirconia structures with controlled surface porosity for biomedical applications. Ceram. Int. 44(11), 12496–12503 (2018)

    Article  CAS  Google Scholar 

  11. A. Carradò, M. Viart, Nanocrystalline spin coated sol–gel hydroxyapatite thin films on Ti substrate: towards potential applications for implants. Solid State Sci. 12(7), 1047–1050 (2010)

    Article  Google Scholar 

  12. Z. Chen, J. Zhai, D. Wang, C. Chen, Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser. Ceram. Int. 44(9), 10204–10209 (2018)

    Article  CAS  Google Scholar 

  13. S. Batool, U. Liaqat, B. Babar, Z. Hussain, Bone whitlockite: synthesis, application, and future prospects. J. Korean Ceram. Soc. 58(5), 530–547 (2021)

    Article  CAS  Google Scholar 

  14. B. Mohapatra, T.R. Rautray, Strontium-substituted biphasic calcium phosphate scaffold for orthopedic application. J. Korean Ceram. Soc. 57(4), 392–400 (2020)

    Article  CAS  Google Scholar 

  15. P. Srinath, P.A. Azeem, K.V. Reddy, Review on calcium silicate-based bioceramics in bone tissue engineering. Appl. Ceram. Technol. 17(5), 2450–2464 (2020)

    Article  CAS  Google Scholar 

  16. A. Doostmohammadi, Z.K. Esfahani, A. Ardeshirylajimi, Z.R. Dehkordi, Zirconium modified calcium-silicate-based nanoceramics: an in vivo evaluation in a rabbit tibial defect model. Appl. Ceram. Technol. 16(2), 431–437 (2019)

    Article  CAS  Google Scholar 

  17. M.I. Alemany, P. Velasquez, M.A. Casa-Lillo, P.N. De Aza, Effect of materials’ processing methods on the ‘in vitro’ bioactivity of wollastonite glass-ceramic materials. J. Non Crystal. Solid. 351(19–20), 1716–1726 (2005)

    Article  CAS  Google Scholar 

  18. J.K. Lee, S. Eum, J. Kim, K.H. Hwang, Fabrication of wollastonite coatings on zirconia by room temperature spray process. J. Nanosci. Nanotechnol. 16(2), 1996–1999 (2016)

    Article  CAS  Google Scholar 

  19. M. Diba, O.M. Goudouri, F. Tapia, A.R. Boccaccini, Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr. Opin. Solid State Mater. Sci. 18(3), 147–167 (2014)

    Article  CAS  Google Scholar 

  20. J. Akedo, Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J. Am. Ceram. Soc. 89(6), 1834–1839 (2006)

    Article  CAS  Google Scholar 

  21. D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer, R. Moos, An overview of the aerosol deposition method: process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol. 6(3), 147–182 (2015)

    Google Scholar 

  22. Y. Cho, J. Hong, H. Ryoo, D. Kim, J. Park, J. Han, Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition. J. Dent. Res. 94(3), 491–499 (2015)

    Article  CAS  Google Scholar 

  23. S.W. Kim, D.S. Seo, J.K. Lee, Fabrication of xenogeneic bone-derived hydroxyapatite thin film by aerosol deposition method. Appl. Surf. Sci. 255(2), 388–390 (2008)

    Article  CAS  Google Scholar 

  24. J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J. Therm. Spray. Technol. 17(2), 181–198 (2008)

    Article  CAS  Google Scholar 

  25. J. Akedo, Room temperature impact consolidation and application to ceramic coatings: aerosol deposition method. J. Ceram. Soc. Jpn. 128(3), 101–116 (2020)

    Article  CAS  Google Scholar 

  26. D.M. Chun, S.H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system. Acta. Mater. 59(7), 2693–2703 (2011)

    Article  CAS  Google Scholar 

  27. D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, Y.F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1), 87–96 (2000)

    Article  Google Scholar 

  28. B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, J.H. Choi, J.W. Kim, Y.L. Cho, C. Park, H.E. Kim, Preparation and in vitro characterization of aerosol-deposited hydroxyapatite coatings with different surface roughnesses. Appl Surf Sci 257(1), 7792–7799 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (Grant No. 2017R1A2B4004368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Kook Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y.H., Lee, J.K. Wollastonite coating on zirconia substrate by room temperature spray processing. J. Korean Ceram. Soc. 59, 393–400 (2022). https://doi.org/10.1007/s43207-021-00180-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00180-y

Keywords

Navigation