Skip to main content

Advertisement

Log in

A brief review of heterostructure electrolytes for high-performance solid oxide fuel cells at reduced temperatures

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs), which are widely viewed as the next-generation energy conversion devices, provide environmentally friendly power generation by direct conversion of chemical energy with high efficiency and less pollutant emissions. However, their high operating temperatures limit their usability in applications, such as distributed generation of electricity and heat, power plants, and transportation. At reduced temperatures, the electrolytes and electrodes used in SOFCs experience sluggish oxygen transport kinetics. Therefore, the development of materials with high oxygen ion conduction and unique cell designs is needed to achieve higher performance. This article provides an overview of the recent progress on solid oxide electrolyte materials, unique cell designs featuring bilayer electrolytes, and resulting microstructures at lower operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2017 Wiley

Fig. 2

Copyright 2019 RSC

Fig. 3

Copyright 2006 PNAS

Fig. 4

Copyright 1978 Elsevier

Fig. 5

Copyright 1981 IOP publishing

Fig. 6

Copyright 1996 IOP publishing

Fig. 7

Copyright 2009 AAAS

Fig. 8

Copyright 2012 Elsevier

Fig. 9

Copyright 2012 Wiley

Fig. 10

Copyright 2021 American Chemical Society

Fig. 11

Copyright 2017 American Chemical Society

Fig. 12

Copyright 1997 IOP publishing

Fig. 13

Copyright 2011 AAAS

Fig. 14

Copyright 2012 Elsevier

Fig. 15

Copyright 2012 RSC

Fig. 16

Copyright 2019 Springer

Fig. 17

Copyright 2006 Elsevier

Fig. 18

Copyright 2018 Elsevier

Fig. 19

Copyright 2014 Elsevier

Fig. 20

Copyright 2017 ACS. Copyright 2020 RSC

Similar content being viewed by others

References

  1. E.D. Wachsman, C.A. Marlowe, K.T. Lee, Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci. 5(2), 5498–5509 (2012)

    Article  Google Scholar 

  2. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011)

    Article  CAS  Google Scholar 

  3. R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17–28 (2003)

    Article  CAS  Google Scholar 

  4. O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects. Electrochim. Acta 45(15–16), 2423–2435 (2000)

    Article  CAS  Google Scholar 

  5. S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152, 405–410 (2002)

    Article  Google Scholar 

  6. T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018)

    Article  Google Scholar 

  7. P. Boldrin, N.P. Brandon, Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2(7), 571–577 (2019)

    Article  CAS  Google Scholar 

  8. S.J. Skinner, Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3(2), 113–121 (2001)

    Article  CAS  Google Scholar 

  9. A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433–455 (2002)

    Article  CAS  Google Scholar 

  10. N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics 174(1–4), 271–277 (2004)

    Article  CAS  Google Scholar 

  11. J.H. Park, H.-N. Im, K.T. Lee, Understanding redox cycling behavior of Ni–YSZ anodes at 500° C in solid oxide fuel cells by electrochemical impedance analysis. J. Korean Ceram. Soc. 58(5), 606–613 (2021)

    Article  CAS  Google Scholar 

  12. S. Jo, B. Sharma, D.-H. Park, J.-H. Myung, Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57(2), 135–151 (2020)

    Article  CAS  Google Scholar 

  13. H.-W. Lee, H.-I. Ji, J.-H. Lee, B.-K. Kim, K.J. Yoon, J.-W. Son, Powder packing behavior and constrained sintering in powder processing of solid oxide fuel cells (SOFCs). J. Korean Ceram. Soc. 56(2), 130–145 (2019)

    Article  CAS  Google Scholar 

  14. D. Kim, J.W. Park, B.-H. Yun, J.H. Park, K.T. Lee, Correlation of time-dependent oxygen surface exchange kinetics with surface chemistry of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ catalysts. ACS Appl. Mate. Interfaces 11(35), 31786–31792 (2019)

    Article  CAS  Google Scholar 

  15. H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A. Ahmad-Khanlou, Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics 138(1–2), 79–90 (2000)

    Article  CAS  Google Scholar 

  16. S.-I. Lee, J. Hong, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim et al., Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells. J. Electrochem. Soc. 161(14), F1389 (2014)

    Article  CAS  Google Scholar 

  17. D.J. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37(8), 1568–1578 (2008)

    Article  CAS  Google Scholar 

  18. S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104(10), 4791–4844 (2004)

    Article  CAS  Google Scholar 

  19. J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21(9), 943–956 (2009)

    Article  CAS  Google Scholar 

  20. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015)

    Article  CAS  Google Scholar 

  21. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan et al., Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa 0.5 Sr 0.5 Co 2− x Fe x O 5+ δ. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  22. Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. (World Scientific, 2011), pp. 255–258

    Google Scholar 

  23. A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang et al., High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31(26), 1806236 (2019)

    Article  Google Scholar 

  24. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi et al., High entropy oxides for reversible energy storage. Nat. Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  25. J.H. Shim, Ceramics breakthrough. Nat. Energy 3(3), 168–169 (2018)

    Article  CAS  Google Scholar 

  26. E. Wachsman, Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics 152, 657–662 (2002)

    Article  Google Scholar 

  27. E. Wachsman, P. Jayaweera, N. Jiang, D. Lowe, B. Pound, Stable high conductivity ceria/bismuth oxide bilayered electrolytes. J. Electrochem. Soc. 144(1), 233 (1997)

    Article  CAS  Google Scholar 

  28. J.S. Ahn, D. Pergolesi, M.A. Camaratta, H. Yoon, B.W. Lee, K.T. Lee et al., High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem. Commun. 11(7), 1504–1507 (2009)

    Article  CAS  Google Scholar 

  29. K.L. Duncan, K.-T. Lee, E.D. Wachsman, Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes. J. Power Sources 196(5), 2445–2451 (2011)

    Article  CAS  Google Scholar 

  30. J. Kilner, R. Brook, A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6(3), 237–252 (1982)

    Article  CAS  Google Scholar 

  31. B. Steele, J. Kilner, P. Dennis, A. McHale, M. Van Hemert, A. Burggraaf, Oxygen surface exchange and diffusion in fast ionic conductors. Solid State Ionics 18, 1038–1044 (1986)

    Article  Google Scholar 

  32. J.W. Fergus, Electrolytes for solid oxide fuel cells. J Power Sources. 162(1), 30–40 (2006)

    Article  CAS  Google Scholar 

  33. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater Sci. 72, 141–337 (2015)

    Article  CAS  Google Scholar 

  34. W. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Metallic interconnectors for solid oxide fuel cells–a review. Mater. High Temp. 20(2), 115–127 (2003)

    CAS  Google Scholar 

  35. Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9(5), 1602–1644 (2016)

    Article  CAS  Google Scholar 

  36. A. Chroneos, B. Yildiz, A. Tarancón, D. Parfitt, J.A. Kilner, Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4(8), 2774–2789 (2011)

    Article  CAS  Google Scholar 

  37. N.Q. Minh, Ceramic fuel cells. J Am Ceram Soc. 76(3), 563–588 (1993)

    Article  CAS  Google Scholar 

  38. V. Kharton, F. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174(1–4), 135–149 (2004)

    Article  CAS  Google Scholar 

  39. A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffée et al., Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ion. 177(19–25), 1965–1968 (2006)

    Article  CAS  Google Scholar 

  40. L. Adijanto, R. Küngas, F. Bidrawn, R. Gorte, J. Vohs, Stability and performance of infiltrated La0. 8Sr0. 2CoxFe1− xO3 electrodes with and without Sm0. 2Ce0. 8O1. 9 interlayers. J Power Sources. 196(14), 5797–5802 (2011)

    Article  CAS  Google Scholar 

  41. D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. 103(10), 3518–3521 (2006)

    Article  CAS  Google Scholar 

  42. S. Omar, E.D. Wachsman, J.C. Nino, Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ion. 178(37–38), 1890–1897 (2008)

    Article  CAS  Google Scholar 

  43. K. Venkataramana, C. Madhuri, C. Madhusudan, Y.S. Reddy, G. Bhikshamaiah, C.V. Reddy, Investigation on La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFCs. Ceram. Int. 44(6), 6300–6310 (2018)

    Article  CAS  Google Scholar 

  44. J. Wright, A.V. Virkar, Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. J Power Sources. 196(15), 6118–6124 (2011)

    Article  CAS  Google Scholar 

  45. T.-N. Lin, M.-C. Lee, R.-J. Yang, J.-C. Chang, W.-X. Kao, L.-S. Lee, Chemical state identification of Ce3+/Ce4+ in the Sm0. 2Ce0. 8O2− δ electrolyte for an anode-supported solid oxide fuel cell after long-term operation. Mater. Lett. 81, 185–188 (2012)

    Article  CAS  Google Scholar 

  46. A. Pesaran, A. Jaiswal, E.D. Wachsman, CHAPTER 1: Bilayer electrolytes for low temperature and intermediate temperature solid oxide fuel cells–a review. Energy Storage and Conversion Mater. pp 1–41 (2019)

  47. D.W. Joh, J.H. Park, D.Y. Kim, B.-H. Yun, K.T. Lee, High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells. J. Power Sources 320, 267–273 (2016)

    Article  CAS  Google Scholar 

  48. B.-H. Yun, C.-W. Lee, I. Jeong, K.T. Lee, Dramatic enhancement of long-term stability of erbia-stabilized bismuth oxides via quadrivalent Hf doping. Chem. Mater. 29(24), 10289–10293 (2017)

    Article  CAS  Google Scholar 

  49. B.-H. Yun, K.J. Kim, D.W. Joh, M.S. Chae, J.J. Lee, D.-W. Kim et al., Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. J. Mater. Chem. A. 7(36), 20558–20566 (2019)

    Article  CAS  Google Scholar 

  50. S. Boyapati, E.D. Wachsman, N. Jiang, Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides. Solid State Ion. 140(1–2), 149–160 (2001)

    Article  CAS  Google Scholar 

  51. K.T. Lee, A.A. Lidie, S.Y. Jeon, G.T. Hitz, S.J. Song, E.D. Wachsman, Highly functional nano-scale stabilized bismuth oxides via reverse strike co-precipitation for solid oxide fuel cells. J. Mater. Chem. A. 1(20), 6199–6207 (2013)

    Article  CAS  Google Scholar 

  52. H. Harwig, A. Gerards, Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J. Solid State Chem. 26(3), 265–274 (1978)

    Article  CAS  Google Scholar 

  53. M. Verkerk, K. Keizer, A. Burggraaf, High oxygen ion conduction in sintered oxides of the Bi 2 O 3-Er 2 O 3 system. J. Appl. Electrochem. 10(1), 81–90 (1980)

    Article  CAS  Google Scholar 

  54. T. Takahashi, H. Iwahara, T. Arao, High oxide ion conduction in sintered oxides of the system Bi 2 O 3-Y 2 O 3. J. Appl. Electrochem. 5(3), 187–195 (1975)

    Article  CAS  Google Scholar 

  55. M. Verkerk, A. Burggraaf, High oxygen ion conduction in sintered oxides of the Bi2 O 3-Dy2 O 3 system. J. Electrochem. Soc. 128(1), 75 (1981)

    Article  CAS  Google Scholar 

  56. N. Sammes, G. Tompsett, H. Näfe, F. Aldinger, Bismuth based oxide electrolytes—structure and ionic conductivity. J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999)

    Article  CAS  Google Scholar 

  57. D.W. Joh, J.H. Park, D. Kim, E.D. Wachsman, K.T. Lee, Functionally graded bismuth oxide/zirconia bilayer electrolytes for high-performance intermediate-temperature solid oxide fuel cells (IT-SOFCs). ACS Appl. Mater. Interfaces. 9(10), 8443–8449 (2017)

    Article  CAS  Google Scholar 

  58. V.C.J. Ferreira, P. Tavares, J.L. Figueiredo, J.L. Faria, Effect of Mg, Ca, and Sr on CeO2 based catalysts for the oxidative coupling of methane: investigation on the oxygen species responsible for catalytic performance. Ind. Eng. Chem. Res. 51(32), 10535–10541 (2012)

    Article  CAS  Google Scholar 

  59. Z. Jie, L. Er-Jun, S. Qiang, J. Yu, Oxygen vacancy formation and migration in Sr-and Mg-doped LaGaO3: a density functional theory study. Chin. Phys. B 21(4), 047201 (2012)

    Article  Google Scholar 

  60. K.-N. Kim, J. Moon, J.-W. Son, J. Kim, H.-W. Lee, J.-H. Lee et al., Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs. J. Korean Ceram. Soc. 42(9), 637–644 (2005)

    Article  CAS  Google Scholar 

  61. H. Iwahara, Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications. Solid State Ionics 52(1–3), 99–104 (1992)

    Article  CAS  Google Scholar 

  62. E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600° C with chemically stable proton-conducting electrolytes. Adv. Mater. 24(2), 195–208 (2012)

    Article  CAS  Google Scholar 

  63. D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras, BaCeO3: materials development, properties and application. Prog. Mater Sci. 60, 72–129 (2014)

    Article  CAS  Google Scholar 

  64. R. Lan, S. Tao, Proton‐conducting materials as electrolytes for solid oxide fuel cells. Mater. High‐Temp. Fuel Cells, pp 133–58 (2013)

  65. W. Jamsak, S. Assabumrungrat, P. Douglas, N. Laosiripojana, R. Suwanwarangkul, S. Charojrochkul et al., Performance of ethanol-fuelled solid oxide fuel cells: proton and oxygen ion conductors. Chem. Eng. J. 133(1–3), 187–194 (2007)

    Article  CAS  Google Scholar 

  66. E.M. Sabolsky, M. Seabaugh, K. Sabolsky, S.A. Ibanez, Z. Zhong, SOFC cells and stacks for complex fuels. ECS Trans. 7(1), 503 (2007)

    Article  Google Scholar 

  67. D. Medvedev, J. Lyagaeva, E. Gorbova, A. Demin, P. Tsiakaras, Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog. Mater Sci. 75, 38–79 (2016)

    Article  CAS  Google Scholar 

  68. H.H.M. Thi, B. Saubat, N. Sergent, T. Pagnier, In situ Raman and optical characterization of H2S reaction with Ni-based anodes for SOFCs. Solid State Ionics 272, 84–90 (2015)

    Article  Google Scholar 

  69. K. Eguchi, K. Tanaka, T. Matsui, R. Kikuchi, Reforming activity and carbon deposition on cermet catalysts for fuel electrodes of solid oxide fuel cells. Catal. Today 146(1–2), 154–159 (2009)

    Article  CAS  Google Scholar 

  70. S. Tao, J.T. Irvine, A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18(12), 1581–1584 (2006)

    Article  CAS  Google Scholar 

  71. C.W. Tanner, A.V. Virkar, Instability of BaCeO3 in H 2 O-Containing atmospheres. J. Electrochem. Soc. 143(4), 1386 (1996)

    Article  CAS  Google Scholar 

  72. S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda et al., Thermophysical properties of BaZrO3 and BaCeO3. J. Alloy. Compd. 359(1–2), 109–113 (2003)

    Article  CAS  Google Scholar 

  73. K. Kurosaki, J. Adachi, T. Maekawa, S. Yamanaka, Thermal conductivity analysis of BaUO3 and BaZrO3 by semiempirical molecular dynamics simulation. J. Alloy. Compd. 407(1–2), 49–52 (2006)

    Article  CAS  Google Scholar 

  74. L. Gui, Y. Ling, G. Li, Z. Wang, Y. Wan, R. Wang et al., Enhanced sinterability and conductivity of BaZr0. 3Ce0. 5Y0. 2O3− δ by addition of bismuth oxide for proton conducting solid oxide fuel cells. J. Power Sources. 301, 369–375 (2016)

    Article  CAS  Google Scholar 

  75. K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid State Ion. 138(1–2), 91–98 (2000)

    Article  CAS  Google Scholar 

  76. K.H. Ryu, S.M. Haile, Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ion. 125(1–4), 355–367 (1999)

    Article  CAS  Google Scholar 

  77. C. Zamfirescu, I. Dincer, Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process. Technol. 90(5), 729–737 (2009)

    Article  CAS  Google Scholar 

  78. Y. Shen, H. Zhao, X. Liu, N. Xu, Preparation and electrical properties of Ca-doped La 2 NiO 4+ δ cathode materials for IT-SOFC. Phys. Chem. Chem. Phys. 12(45), 15124–15131 (2010)

    Article  CAS  Google Scholar 

  79. Y.-J. Gu, Z.-G. Liu, J.-H. Ouyang, F.-Y. Yan, Y. Zhou, Structure and electrical conductivity of BaCe0. 85Ln0. 15O3− δ (Ln= Gd, Y, Yb) ceramics. Electrochim. Acta 105, 547–553 (2013)

    Article  CAS  Google Scholar 

  80. J. Bu, P.G. Jönsson, Z. Zhao, Ionic conductivity of dense BaZr0. 5Ce0. 3Ln0. 2O3− δ (Ln= Y, Sm, Gd, Dy) electrolytes. J. Power Sources. 272, 786–793 (2014)

    Article  CAS  Google Scholar 

  81. P. Sawant, S. Varma, B. Wani, S. Bharadwaj, Synthesis, stability and conductivity of BaCe0. 8− xZrxY0. 2O3− δ as electrolyte for proton conducting SOFC. Int. J. Hydrogen Energy. 37(4), 3848–3856 (2012)

    Article  CAS  Google Scholar 

  82. X. Wang, J. Yin, J. Xu, H. Wang, G. Ma, Chemical stability, ionic conductivity of BaCe0. 9− xZrxSm0. 10O3− α and its application to ammonia synthesis at atmospheric pressure. Chin. J. Chem. 29(6), 1114–1118 (2011)

    Article  CAS  Google Scholar 

  83. Y. Li, R. Guo, C. Wang, Y. Liu, Z. Shao, J. An et al., Stable and easily sintered BaCe0. 5Zr0. 3Y0. 2O3− δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells. Electrochim. Acta 95, 95–101 (2013)

    Article  CAS  Google Scholar 

  84. E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, S. Licoccia, E. Traversa, Tailoring the chemical stability of Ba (Ce0. 8− xZrx) Y0. 2O3− δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179(15–16), 558–564 (2008)

    Article  CAS  Google Scholar 

  85. G.C. Mather, M.S. Islam, Defect and dopant properties of the SrCeO3-based proton conductor. Chem. Mater. 17(7), 1736–1744 (2005)

    Article  CAS  Google Scholar 

  86. L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0. 1Ce0. 7Y0. 2–xYbxO3–δ. Science 326(5949), 126–129 (2009)

    Article  CAS  Google Scholar 

  87. S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018)

    Article  CAS  Google Scholar 

  88. L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu, A Novel Composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20(17), 3280–3283 (2008)

    Article  CAS  Google Scholar 

  89. M. Shiono, K. Kobayashi, T. Lannguyen, K. Hosoda, T. Kato, K. Ota et al., Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low-temperature SOFCs. Solid State Ionics 170(1–2), 1–7 (2004)

    Article  CAS  Google Scholar 

  90. O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics 22(2–3), 241–246 (1987)

    Article  CAS  Google Scholar 

  91. F. Marques, L. Navarro, Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study. Solid State Ionics 100(1–2), 29–38 (1997)

    Article  CAS  Google Scholar 

  92. A.V. Virkar, Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes: electrolyte stability. J. Electrochem. Soc. 138(5), 1481 (1991)

    Article  CAS  Google Scholar 

  93. T.-H. Kwon, T. Lee, H.-I. Yoo, Partial electronic conductivity and electrolytic domain of bilayer electrolyte Zr0.84Y0.16O1.92/Ce0.9Gd0.1O1.95. Solid State Ionics 195(1), 25–35 (2011)

    Article  CAS  Google Scholar 

  94. D.-H. Myung, J. Hong, K. Yoon, B.-K. Kim, H.-W. Lee, J.-H. Lee et al., The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell. J. Power Sources 206, 91–96 (2012)

    Article  CAS  Google Scholar 

  95. J. Van Roosmalen, E. Cordfunke, Chemical reactivity and interdiffusion of (La, Sr) MnO3 and (Zr, Y) O2, solid oxide fuel cell cathode and electrolyte materials. Solid State Ionics 52(4), 303–312 (1992)

    Article  Google Scholar 

  96. F. Wang, M.E. Brito, K. Yamaji, D.-H. Cho, M. Nishi, H. Kishimoto et al., Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system. Solid State Ionics 262, 454–459 (2014)

    Article  CAS  Google Scholar 

  97. F. Tietz, D. Sebold, A. Brisse, J. Schefold, Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power Sources 223, 129–135 (2013)

    Article  CAS  Google Scholar 

  98. Z. Gao, V.Y. Zenou, D. Kennouche, L. Marks, S.A. Barnett, Solid oxide cells with zirconia/ceria Bi-Layer electrolytes fabricated by reduced temperature firing. J. Mater. Chem. A. 3(18), 9955–9964 (2015)

    Article  CAS  Google Scholar 

  99. A. Infortuna, A.S. Harvey, L.J. Gauckler, Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv. Func. Mater. 18(1), 127–135 (2008)

    Article  CAS  Google Scholar 

  100. E.O. Oh, C.M. Whang, Y.R. Lee, S.Y. Park, D.H. Prasad, K.J. Yoon et al., Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Adv Mater. 24(25), 3373–3377 (2012)

    Article  CAS  Google Scholar 

  101. I. Jang, S. Kim, C. Kim, H. Lee, H. Yoon, T. Song et al., Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance. J. Power Sources. 435, 226776 (2019)

    Article  CAS  Google Scholar 

  102. Z. Fan, J. An, A. Iancu, F.B. Prinz, Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells. J. Power Sources 218, 187–191 (2012)

    Article  CAS  Google Scholar 

  103. J.H. Park, C.H. Jung, K.J. Kim, D. Kim, H.R. Shin, J.-E. Hong et al., Enhancing bifunctional electrocatalytic activities of oxygen electrodes via incorporating highly conductive Sm3+ and Nd3+ double-doped ceria for reversible solid oxide cells. ACS Appl. Mater. Interfaces. 13(2), 2496–2506 (2021)

    Article  CAS  Google Scholar 

  104. C. Nicollet, J. Waxin, T. Dupeyron, A. Flura, J.-M. Heintz, J.P. Ouweltjes et al., Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration. J. Power Sources 372, 157–165 (2017)

    Article  CAS  Google Scholar 

  105. S. Lee, S. Lee, H.-J. Kim, S.M. Choi, H. An, M.Y. Park et al., Highly durable solid oxide fuel cells: suppressing chemical degradationviarational design of a diffusion-blocking layer. J. Mater. Chem. A. 6(31), 15083–15094 (2018)

    Article  CAS  Google Scholar 

  106. C. Kim, S. Kim, I. Jang, H. Yoon, T. Song, U. Paik, Facile fabrication strategy of highly dense gadolinium-doped ceria/yttria-stabilized zirconia bilayer electrolyte via cold isostatic pressing for low temperature solid oxide fuel cells. J. Power Sources 415, 112–118 (2019)

    Article  CAS  Google Scholar 

  107. R.D. Bayliss, S.N. Cook, S. Kotsantonis, R.J. Chater, J.A. Kilner, Oxygen ion diffusion and surface exchange properties of the α-and δ-phases of Bi2O3. Adv. Energy Mater. 4(10), 1301575 (2014)

    Article  Google Scholar 

  108. C.-Y. Yoo, B.A. Boukamp, H.J. Bouwmeester, Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide. J. Solid State Electrochem. 15(2), 231–236 (2011)

    Article  CAS  Google Scholar 

  109. K.T. Lee, D.W. Jung, M.A. Camaratta, H.S. Yoon, J.S. Ahn, E.D. Wachsman, Gd0. 1Ce0. 9O1. 95/Er0. 4Bi1. 6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0. 4Bi1. 6O3 powders for high performance low temperature solid oxide fuel cells. J. Power Sources. 205, 122–128 (2012)

    Article  CAS  Google Scholar 

  110. J. Hou, L. Bi, J. Qian, Z. Zhu, J. Zhang, W. Liu, High performance ceria–bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating. J. Mater. Chem. A. 3(19), 10219–10224 (2015)

    Article  CAS  Google Scholar 

  111. A. Pesaran, A. Jaiswal, Y. Ren, E.D. Wachsman, Development of a new ceria/yttria-ceria double-doped bismuth oxide bilayer electrolyte low-temperature SOFC with higher stability. Ionics 25(7), 3153–3164 (2019)

    Article  CAS  Google Scholar 

  112. K. Kim, B. Kim, J. Son, J. Kim, H.-W. Lee, J.-H. Lee et al., Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs. Solid State Ionics 177(19–25), 2155–2158 (2006)

    Article  CAS  Google Scholar 

  113. K.B. Yoo, G.M. Choi, Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC. Solid State Ionics 11(180), 867–871 (2009)

    Article  Google Scholar 

  114. E.-H. Song, T.-J. Chung, H.-R. Kim, J.-W. Son, B.-K. Kim, J.-H. Lee et al., Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs. J. Korean Ceram. Soc. 44(12), 710–714 (2007)

    Article  CAS  Google Scholar 

  115. Z. Bi, B. Yi, Z. Wang, Y. Dong, H. Wu, Y. She et al., A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes. Electrochem. Solid State Lett. 7(5), A105 (2004)

    Article  CAS  Google Scholar 

  116. Z. Bi, Y. Dong, M. Cheng, B. Yi, Behavior of lanthanum-doped ceria and Sr-, Mg-doped LaGaO3 electrolytes in an anode-supported solid oxide fuel cell with a La0. 6Sr0. 4CoO3 cathode. J. Power Sources. 161(1), 34–39 (2006)

    Article  CAS  Google Scholar 

  117. B. Zhu, X. Liu, P. Zhou, X. Yang, Z. Zhu, W. Zhu, Innovative solid carbonate–ceria composite electrolyte fuel cells. Electrochem. Commun. 3(10), 566–571 (2001)

    Article  CAS  Google Scholar 

  118. M. Benamira, V. Albin, A. Ringuedé, R.-N. Vannier, A. Bodén, C. Lagergren et al., Structural and electrical properties of gadolinia-doped ceria mixed with alkali earth carbonates for SOFC applications. ECS Trans. 7(1), 2261 (2007)

    Article  CAS  Google Scholar 

  119. R. Raza, X. Wang, Y. Ma, X. Liu, B. Zhu, Improved ceria–carbonate composite electrolytes. Int. J. Hydrogen Energy 35(7), 2684–2688 (2010)

    Article  CAS  Google Scholar 

  120. L. Fan, C. He, B. Zhu, Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: a review. Int. J. Energy Res. 41(4), 465–481 (2017)

    Article  CAS  Google Scholar 

  121. X. Wang, Y. Ma, B. Zhu, State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). Int. J. Hydrogen Energy 37(24), 19417–19425 (2012)

    Article  CAS  Google Scholar 

  122. L. Fan, C. Wang, O. Osamudiamen, R. Raza, M. Singh, B. Zhu, Mixed ion and electron conductive composites for single component fuel cells: I. Effects of composition and pellet thickness. J. Power Sources. 217, 164–169 (2012)

    Article  CAS  Google Scholar 

  123. S. Li, J. Sun, X. Sun, B. Zhu, A high functional cathode material: for low-temperature solid oxide fuel cells. Electrochem. Solid State Lett. 9(2), A86 (2005)

    Article  Google Scholar 

  124. L. Fan, C. Wang, M. Chen, J. Di, J. Zheng, B. Zhu, Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate composite electrolytes for solid oxide fuel cells. Int. J. Hydrogen Energy 36(16), 9987–9993 (2011)

    Article  CAS  Google Scholar 

  125. C. Xia, Y. Li, Y. Tian, Q. Liu, Y. Zhao, L. Jia et al., A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J. Power Sources 188(1), 156–162 (2009)

    Article  CAS  Google Scholar 

  126. J. Huang, L. Yang, R. Gao, Z. Mao, C. Wang, A high-performance ceramic fuel cell with samarium doped ceria–carbonate composite electrolyte at low temperatures. Electrochem. Commun. 8(5), 785–789 (2006)

    Article  CAS  Google Scholar 

  127. X. Wang, Y. Ma, R. Raza, M. Muhammed, B. Zhu, Novel core–shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Electrochem. Commun. 10(10), 1617–1620 (2008)

    Article  CAS  Google Scholar 

  128. L. Zhang, R. Lan, A. Kraft, S. Tao, A stable intermediate temperature fuel cell based on doped-ceria–carbonate composite electrolyte and perovskite cathode. Electrochem. Commun. 13(6), 582–585 (2011)

    Article  CAS  Google Scholar 

  129. C. Xia, Y. Li, Y. Tian, Q. Liu, Z. Wang, L. Jia et al., Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte. J. Power Sources 195(10), 3149–3154 (2010)

    Article  CAS  Google Scholar 

  130. R. Raza, X. Wang, Y. Ma, B. Zhu, Study on calcium and samarium co-doped ceria based nanocomposite electrolytes. J. Power Sources 195(19), 6491–6495 (2010)

    Article  CAS  Google Scholar 

  131. J. Huang, Z. Gao, Z. Mao, Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int. J. Hydrogen Energy 35(9), 4270–4275 (2010)

    Article  CAS  Google Scholar 

  132. B. Zhu, S. Li, B.-E. Mellander, Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600° C) solid oxide fuel cells. Electrochem. Commun. 10(2), 302–305 (2008)

    Article  CAS  Google Scholar 

  133. Z. Gao, J. Huang, Z. Mao, C. Wang, Z. Liu, Preparation and characterization of nanocrystalline Ce0. 8Sm0. 2O1. 9 for low temperature solid oxide fuel cells based on composite electrolyte. Int. J. Hydrogen Energy. 35(2), 731–737 (2010)

    Article  CAS  Google Scholar 

  134. A. Ali, A. Rafique, M. Kaleemullah, G. Abbas, M. Ajmal Khan, M.A. Ahmad et al., Effect of alkali carbonates (single, binary, and ternary) on doped ceria: a composite electrolyte for low-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces. 10(1), 806–818 (2018)

    Article  CAS  Google Scholar 

  135. Y. Jing, P. Lund, M.I. Asghar, F. Li, B. Zhu, B. Wang et al., Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceram. Int. 46(18), 29290–29296 (2020)

    Article  CAS  Google Scholar 

  136. S.M. Choi, J.H. Lee, H. An, J. Hong, H. Kim, K.J. Yoon et al., Fabrication of anode-supported protonic ceramic fuel cell with Ba(Zr0.85Y0.15)O3-delta-Ba(Ce0.9Y0.1)O3-delta dual-layer electrolyte. Int. J. Hydrogen Energy. 39(24), 12812–12818 (2014)

    Article  CAS  Google Scholar 

  137. Y. Ma, B. He, J.Q. Wang, M. Cheng, X.Z. Zhong, J.B. Huang, Porous/dense bilayer BaZr0.8Y0.2O3-delta electrolyte matrix fabricated by tape casting combined with solid-state reactive sintering for protonic ceramic fuel cells. Int. J. Hydrogen Energy. 46(15), 9918–9926 (2021)

    Article  CAS  Google Scholar 

  138. J. Basbus, M. Arce, H. Troiani, Q. Su, H. Wang, A. Caneiro et al., Study of BaCe0.4Zr0.4Y0.2O3-delta/BaCe0.8Pr0.2O3-delta (BCZY/BCP) bilayer membrane for Protonic Conductor Solid Oxide Fuel Cells (PC-SOFC). Int. J. Hydrogen Energy. 45(8), 5481–5490 (2020)

    Article  CAS  Google Scholar 

  139. S. Lee, I. Park, H. Lee, D. Shin, Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells. Int. J. Hydrogen Energy 39(26), 14342–14348 (2014)

    Article  CAS  Google Scholar 

  140. Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500° C. Adv Mater. 29(48), 1700132 (2017)

    Article  Google Scholar 

  141. P.N. Huang, A. Petric, Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium. J Electrochem Soc. 143(5), 1644 (1996)

    Article  CAS  Google Scholar 

  142. S.S. Shin, J.H. Kim, K.T. Bae, K.-T. Lee, S.M. Kim, J.-W. Son et al., Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500° C. Energy Environ. Sci. 13(10), 3459–3468 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded and conducted under the ‘Competency Development Program for Industry Specialists’ of Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement of Technology (KIAT). (No. P0017120, HRD program for Foster R&D specialist of parts for eco-friendly vehicle(xEV)). This research was also supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (20194030202360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Taek Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Jeong, I., Kim, K.J. et al. A brief review of heterostructure electrolytes for high-performance solid oxide fuel cells at reduced temperatures. J. Korean Ceram. Soc. 59, 131–152 (2022). https://doi.org/10.1007/s43207-021-00175-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00175-9

Keywords

Navigation