Skip to main content

Energy materials for energy conversion and storage: focus on research conducted in Korea

Abstract

Fossil fuels are widely used around the world, resulting in adverse effects on global temperatures. Hence, there is a growing movement worldwide towards the introduction and use of green energy, i.e., energy produced without emitting pollutants. Korea has a high dependence on fossil fuels and is thus investigating various energy production and storage technologies for producing and using green energy. Renewable energy technologies are essential for producing green energy, and energy storage technologies are necessary for its effective use. In Korea, the renewable energy technologies of most interest are solar power generation and fuel cells, followed by energy storage, transportation. This review intends to provide information about the energy materials currently being researched to develop these energy technologies.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J.H. Oh, In the era of climate change, what is our response? Korea Energy Econ. Inst. 15, 4–21 (2018)

    Google Scholar 

  2. 2.

    S.H. Lee, L.H. Jo, International renewable energy policy change and market analysis (Korea Energy Economics Institute, Ulsan, 2018)

  3. 3.

    BP Statistical Review of World Energy, 68th edn. (2019)

  4. 4.

    J. Kim, J.H. Lim, Organic-inorganic hybrid thermoelectric material synthesis and properties. J. Korean Ceram. Soc. 54, 271 (2017)

    Google Scholar 

  5. 5.

    H. Kwon, J.W. Han, Investigation of LiO2 adsorption on LaB1-xB’xO3(001) for Li-air battery applications: a density functional theory study. J. Korean Ceram. Soc. 53, 306 (2016)

    CAS  Google Scholar 

  6. 6.

    Korea Energy Economics Institute, Year book of energy statistics (2016)

  7. 7.

    G. Kim, W. Kim, W. Lee, Fabrication of silicide-based thermoelectric nanocomposites: a review. J. Korean Ceram. Soc. 56, 4358 (2019)

    Google Scholar 

  8. 8.

    Korea Energy Agency, 2020 KEA Energy Handbook (2020)

  9. 9.

    POSCO Research Institute, Domestic and overseas renewable energy supply status and major issues, POSRI Issue Report (2019)

  10. 10.

    Ministry of Science and Technology, National Technical Map (NTRM) classification (2002)

  11. 11.

    Y.S. Kim, Energy materials development trend in Korea. (Korea Institute of Science and Technology Information, Deajeon, 2010)

  12. 12.

    Korea Institute of Science and Technology Information, Special functional material technology, Material & Components Technology Network (2009)

  13. 13.

    S.H. Jung, Y. Myung, G.S. Das, A. Bhatnagar, J.W. Park, K.M. Tripathi, T.Y. Kim, Carbon nano-onions from waste oil for application in energy storage devices. N. J. Chem. 44, 7369–7375 (2020)

    CAS  Google Scholar 

  14. 14.

    S.I. Kim, K.Y. Lee, J.H. Lim, Fabrication of PEDOT: PSS-PVP nanofiber-embedded Sb2Te3 thermoelectric films by multi-step coating and their improved thermoelectric properties. Materials 13, 2835 (2020)

    CAS  Google Scholar 

  15. 15.

    J.Y. Kim, J.Y. Oh, T.I. Lee, Multi-dimensional nanocomposites for stretchable thermoelectric applications. Appl. Phys. Lett. 114, 043902 (2019)

    Google Scholar 

  16. 16.

    D. Jung, D. Kim, W.J. Yang, E.S. Cho, S.J. Kwon, J.H. Han, Surface functionalization of liquid-phase exfoliated, two-dimensional MoS2 and WS2 nanosheets with 2-mercaptoethanol. J. Nanosci. Nanotechnol. 18, 6265–6269 (2018)

    CAS  Google Scholar 

  17. 17.

    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28 (2010)

    CAS  Google Scholar 

  18. 18.

    S. Jo, B. Sharma, D.H. Park, J.H. Myung, Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57, 135 (2020)

    CAS  Google Scholar 

  19. 19.

    H. Jeong, D.W. Jeon, J.H. Kim, Y.J. Lee, M. Lee, J. Hwang, J. Lee, Y. Yang, S.K. Youk, T.H. Park, D. Shin, Effect of zirconium dioxide in BaO-ZnO-B2O3-SiO2 system on optical properties of color conversion glasses. J. Korean Ceram. Soc. 53, 258 (2016)

    CAS  Google Scholar 

  20. 20.

    Green monitor, Technology, Policy review part V, 2016, 22. Hyundaiglobal, http://www.hyundaiglobal.com/business/sub01_03.php23.

  21. 21.

    Korea Agency for Infrastructure Technology Advancement, Global report, Trends and Outlook for the South Korea Energy and Environment Industry, 2017

  22. 22.

    Ministry of Science, ICT and Future Planning, 18 Government R&D Investment Direction, (Ener Posco research Institute gy and environment), 2018

  23. 23.

    Ministry of Trade, Industry and Energy, 2020 Energy Technology Development Action Plan, 2020

  24. 24.

    J.H Chang, H.R Cho, Industry Analysis Part 5: Global Energy Platform, ESS, Samsungpop, 2019

  25. 25.

    Meteorological Agency Meteorological Yearbook, Korea, 2017

  26. 26.

    S.D. Kim, New climate mechanism of the climate change convention. Auto J. 20–22 (2018)

  27. 27.

    National Law Information Center. New Energy and Renewable Energy Development, Use and Spread Promotion Law (Act No. 14670). (Ministry of Government Legislation (MOLEG), Sejong, 2018), Available online: http://www.law.go.kr/lsInfoP.do?lsiSeq=192510&efYd=20170922#0000. Accessed on 18 March 2019

  28. 28.

    Y. Wang, K.M. Kang, M. Kim, H.H. Park, Effective Oxygen-defect passivation in ZnO thin films prepared by atomic layer deposition using hydrogen peroxide. J. Korean Ceram. Soc. 56(3), 302–307 (2019)

    CAS  Google Scholar 

  29. 29.

    W.C. Oh, Y. Areerob, Modeling dye-sensitized solar cells with graphene based on nanocomposites in the Brillouin zone and density functional theory. J. Korean Ceram. Soc. 58(1), 50–61 (2021)

    CAS  Google Scholar 

  30. 30.

    Ministry of Trade, Industry and Energy, Hydrogen Economy Revitalization Roadmap, 2019

  31. 31.

    S.H. Hur, Y.J. Kim, Current and future fuel cell market. Samjung KPMG Econ. Res. Inst. 112, 1–23 (2019)

    Google Scholar 

  32. 32.

    W.S. Han, H.S. Kim, B.S. Choi, D.K. Oh, Trends of the next-generation solar cell technology. Electron. Commun. Trend Anal. 22, 86–94 (2007)

    Google Scholar 

  33. 33.

    H.S. Yang, J. Kim, S. Kim, N.S.A. Eom, S. Kang, C.S. Han, S.H. Kim, D. Lim, J.H. Lee, S.H. Park, J.W. Choi, C.L. Lee, B. Yoo, J.H. Lim, Kerf-less exfoliated thin silicon wafer prepared by nickel electrodeposition for solar cells. Front. Chem. 6, 600 (2019)

    Google Scholar 

  34. 34.

    S.H. Lee, J.H. Kang, Problems and improvements in the domestic solar and wind power generation industry. KDB Future Strategy Res. Center Ind. Technol. Res. Center 764, 71–93 (2019)

    Google Scholar 

  35. 35.

    D.E. Lee, S.Y. Kim, H.W. Jang, Lead-free all-inorganic halide perovskite quantum dots: review and outlook. J. Korean Ceram. Soc. 57(5), 455–479 (2020)

    CAS  Google Scholar 

  36. 36.

    N.J. Jeon, H.J. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G.J. Kim, H.W. Shin, S.I. Seok, J.M. Lee, J.W. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)

    CAS  Google Scholar 

  37. 37.

    G. Liu, M. Wang, H. Wand, R.E.A. Ardhi, H.J. Yu, D. Zou, J.K. Lee, Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells. Nano Energy 49, 95–102 (2018)

    CAS  Google Scholar 

  38. 38.

    D.C. Lim, J.H. Jeong, K.L. Pyo, D.G. Lee, J.H. Hea, J.W. Choi, C.L. Lee, J.H. Seo, S.Y. Kim, S.U. Cho, Effect of emissive quantum cluster consisting of 22 Au atoms on the performance of semi-transparent plastic solar cells under low intensity illumination. Nano Energy 48, 518–525 (2018)

    CAS  Google Scholar 

  39. 39.

    T.H. Jang, H.W. Lee, C.H. Lee, Review of literature information on wind power generation (3). Korean Soc. Mech. Eng. 59, 47–50 (2019)

    Google Scholar 

  40. 40.

    C.H. Park, Recent technology trends and market/policy status in the solar field. Konetic Rep. 18 (2017)

  41. 41.

    Korea Institute of Science & Technology Evaluation and Planning, Current status of solar technology and R&D role of government. Science and R&D Business Trend Brief. 02, 1–35 (2012)

  42. 42.

    Y. G. Kim, A Shifting Global Energy Order Under the New Climate Change System and Korea’s Energy Strategy, Hanul Academy, 2017, ISBN 10:8946059060 (2017)

  43. 43.

    Renewable Energy 2020 Implementation Plan, Ministry of Trade, Industry and Energy, 2017

  44. 44.

    J. Y. Chang, The present and future of the fuel cell market, Samjung KPMG, Economic Research Institute, 2019

  45. 45.

    Y.Y. Chu, Z.B. Wang, Z.Z. Jiang, D.M. Gu, G.P. Yin, Facile synthesis of hollow spherical sandwich PtPd/C catalyst by electrostatic self-assembly in polyol solution for methanol electrooxidation. J. Power Sources 203, 17–25 (2012)

    CAS  Google Scholar 

  46. 46.

    Korea Institute of Science and Technology Information, Manufacturing Technology Trends for Hydrogen Generation, 2005

  47. 47.

    Y.J. Sa, S.H. Joo, Recent advances in M-N/C electrocatalysts for polymer electrolyte membrane fuel cells. NICE 35, 264–271 (2017)

    Google Scholar 

  48. 48.

    S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee, M.J. Kim, B.S. Mun, S.G. Kwon, Y.E. Sung, T. Hyeon, Design principle of Fe−N−C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019)

    CAS  Google Scholar 

  49. 49.

    J.H. Park, Y. Sohn, P. Kim, J.B. Joo, Pt deposited Pt–Pd/C electrocatalysts with the enhanced oxygen reduction activity. J. Ind. Eng. Chem. 36, 109–115 (2016)

    CAS  Google Scholar 

  50. 50.

    H.U. Park, A.H. Park, W. Shi, G.G. Park, Y.U. Kwon, Ternary core-shell PdM@Pt (M = Mn and Fe) nanoparticle electrocatalysts with enhanced ORR catalytic properties. Sonochemistry 58, 1046733 (2019)

    Google Scholar 

  51. 51.

    Y. Kim, Y. Noh, E.J. Lim, S. Lee, S.M. Choi, W.B. Kim, Star-shaped Pd@Pt core–shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2, 6976 (2014)

    CAS  Google Scholar 

  52. 52.

    J. Lim, H. Shin, M. Kim, H. Lee, K.S. Lee, Y. Kwon et al., Ga–doped Pt–Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 18(4), 2450–2458 (2018)

    CAS  Google Scholar 

  53. 53.

    J.N. Tiwari, K. Nath, S. Kumar, R.N. Tiwari, K.C. Kemp, N.H. Le, D.H. Youn, J.S. Lee, K.S. Kim, Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nature Com. 4, 2221 (2013)

    Google Scholar 

  54. 54.

    H.J. Kim, The 4th industrial revolution and the prospect of changes in the power industry. Korea Energy Economics Institute, KEEI issue paper 09, 2019

  55. 55.

    M.G. Song, Li-ion battery material technology trend analysis and forecast, Industrial technology issues, Industrial Bank of Korea

  56. 56.

    H. S. Hur, Secondary Battery Industry Trend and Development Plan, The Federation of Korean Industries, 2011

  57. 57.

    Commercializations promotion ageny for R&D outcomes, Lithium secondary battery material technology trend. S&T Market Rep. 62 (2018)

  58. 58.

    A. Chakraborty, S. Kunnikuruvan, M. Dixit, D.T. Major, Review of computational studies of NCM cathode materials for Li-ion batteries. Isr. J. Chem. 60, 1–14 (2020)

    Google Scholar 

  59. 59.

    H.J. Bang, H. Joachin, H. Yang, K. Amine, J. Prakash, Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J. Electrochem. Soc. 153, A731 (2006)

    CAS  Google Scholar 

  60. 60.

    S.P. Woo, S.H. Lee, K.S. Lee, Y.S. Yoon, Effect of increased surface area of LiMn0. 475Ni0.475Al0.05O2 cathode material for Li-ion battery. Mater. Lett. 129, 80–83 (2014)

    CAS  Google Scholar 

  61. 61.

    C.H. Jung, H. Shim, D. Eum, S.H. Hong, Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries. J. Korean Ceram. Soc. 58(1), 1–27 (2021)

    CAS  Google Scholar 

  62. 62.

    S.H. Lee, B.S. Jin, H.S. Kim, Superior performances of B-doped LiNi0.84Co0.10Mn0.06O2 cathode for advanced LIBs. Sci. Rep. 9, 17541 (2019)

    Google Scholar 

  63. 63.

    T. Sattar, S.H. Lee, S.J. Sim, B.S. Jin, H.S. Kim, Effect of Mg-doping on the electrochemical performance of LiNi0.84Co0.11Mn0.05O2 cathode for lithium ion batteries, Online (2020)

  64. 64.

    H.J. Noh, S. Youn, C.S. Yoon, Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013)

    CAS  Google Scholar 

  65. 65.

    S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, Y.K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2(1), 196–223 (2017)

    CAS  Google Scholar 

  66. 66.

    K.J. Park, J.Y. Hwang, H.H. Ryu, F. Maglia, S.J. Kim, P. Lamp et al., Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: are microcracks really critical? ACS Energy Lett. 4(6), 1394–1400 (2019)

    CAS  Google Scholar 

  67. 67.

    J. H. Seo, U. H. Kim, Y. K. Sun, C. S. Yoon, Multi-Doped (Ga,B) Li[Ni0.885Co0.100Al0.015]O2 Cathode. J. Electrochem. Soc. 167 (2020)

  68. 68.

    U.H. Kim, L.Y. Kuo, P. Kaghazchi, C.S. Yoon, Y.K. Sun, Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries. ACS Energy Lett. 4, 576–582 (2019)

    CAS  Google Scholar 

  69. 69.

    K.S. Yoo, Y.H. Kang, K.R. Im, C.S. Kim, Surface modification of Li(Ni0.6Co0.2Mn0.2)O2 cathode materials by Nano-Al2O3 to improve electrochemical performance in lithium-ion batteries. Materials 10, 1273 (2017)

    Google Scholar 

  70. 70.

    K. Hu, X. Qi, C. Lu, K. Du, Z. Peng, Y. Cao, G. Hu, Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials via Li4P2O7 surface modification for Li-ion batteries. Ceram. Int. 44, 14209–14216 (2018)

    CAS  Google Scholar 

  71. 71.

    W. Liu, X. Li, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair, X. Sun, Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44, 111–120 (2018)

    CAS  Google Scholar 

  72. 72.

    B.J. Chae, T. Yim, Effect of surface modification using a sulfate-based surfactant on the lectrochemical performance of Ni-rich cathode materials. Mater. Chem. Phys. 214, 66–72 (2018)

    CAS  Google Scholar 

  73. 73.

    S.H. Moon, E.S. Kim, J.E. Lee, Y.K. Shin, M.C. Kim, K.W. Park, Improved electrochemical properties of LiNi0.8Co0.15Al0.05O2 cathode materials synthesized using micelle structures. J. Solid State Electrochem. online (2020)

  74. 74.

    H.S. Lim, L. Liu, H.J. Lee, J.M. Cha, D.K. Yoon, B.K. Ryu, The study on the interface characteristics of solid-state electrolyte. J. Korean Ceram. Soc. 58(3), 373–377 (2021)

    CAS  Google Scholar 

  75. 75.

    S. Cao, S. Song, X. Xiang, Q. Hu, C. Zhang, Z. Xia, F. Chen, Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review. J. Korean Ceram. Soc. 56(2), 111–129 (2019)

    CAS  Google Scholar 

  76. 76.

    A new energy paradigm for the future, Third energy master plan, Ministry of Trade, Industry and Energy, 2019

  77. 77.

    The government of the republic of Korea, 2050 carbon neutral strategy of the republic of Korea, 2020

Download references

Acknowledgements

This work was supported by Defense Acquisition Program Administration and Agency for Defense Development under the contract (UD190006GD) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government(MOTIE)(2021400000690, GCU-AU Next Generation Fuel Cell Development Program).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Soo Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Ko, J., Ahn, TY. et al. Energy materials for energy conversion and storage: focus on research conducted in Korea. J. Korean Ceram. Soc. 58, 645–661 (2021). https://doi.org/10.1007/s43207-021-00152-2

Download citation

Keywords

  • Energy materials
  • Solar cell
  • Fuel cell
  • Lithium-ion battery