Skip to main content

Basic and Advanced Considerations of Energy Storage Devices

  • Chapter
  • First Online:
Organic Electrodes

Abstract

The main source of electrical energy consumed by humanity comes from fossil fuel and cannot be stored, it also has low conversion efficiencies and generates environmental pollutants such as CO2, NOx, SOx, as well as lead, and other toxic metals. Another problem for energy management systems is the development of efficient storage techniques. A solution to the second problem requires innovative technologies in the design, manufacture, and characterization of energy storage devices (ESD) to improve efficiency and life while avoiding losses. Immediate attention to electrochemical reactions used in this ESD seeking those having the highest exchange current densities is needed. Additionally, a study of the physical structure of electrodes and the use of minimum molecular weight reagents to be used in the storage systems require scientific study efforts. Significant advances have been ongoing to develop promising organic materials with applications in ESD. However, it is necessary to solve further challenges with storage technology. These include developing electrodes offering high energy density, long life at low cost, and systems that operate at high electrocatalytic activity. This chapter presents the basic and advanced science and engineering aspects of ESD. It includes a basic introduction to their scientific principles, engineering fabrication, and characterization methods needed to understand ESD operation. It also includes information about current advances in ESD technology. Finally, it discusses the importance and the limitations that the use of organic materials has on ESD performance and their role in the environmental impact and utilization of ESD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morley, J., Widdicks, K., Hazas, M.: Digitalisation, energy and data demand: the impact of Internet traffic on overall and peak electricity consumption. Energy Res. Soc. Sci. 38, 128–137 (2018)

    Article  Google Scholar 

  2. Zhang, Z., Feng, L., Zheng, Z., Wang, G.: Research on energy industry strategy based on intelligent digital upgrading. In: E3S Web of Conferences, vol. 257, 02001 (2021)

    Google Scholar 

  3. Borowskii, P.F.: Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector. Energies 14, 1885 (2021)

    Google Scholar 

  4. O’Dea, S.: Number of smartphones sold to end users worldwide from 2007 to 2021 (2021). https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/

  5. Lim, G.J.H., Liu, X., Guan, C., Wang, J.: Co/Zn bimetallic oxides derived from metal organic frameworks for high performance electrochemical energy storage. Electrochim. Acta 291, 177–187 (2018)

    Article  CAS  Google Scholar 

  6. Almeida, M.M., Más, A.A., Silva, T.M., Montemor, M.F.: From manganese oxide to manganese sulphide: synthesis and its effect on electrochemical energy storage performance. Electrochim. Acta 389 138711 (2021)

    Google Scholar 

  7. Chameh, B., Moradi, M., Hessari, F.A.: Decoration of metal organic frameworks with Fe2O3 for enhancing electrochemical performance of ZIF-(67 and 8) in energy storage application. Synth. Met. 269, 116540 (2020)

    Google Scholar 

  8. Guo, R., Wang, Y., Heng, S., Zhu, G., Battaglia, V.S., Zheng, H.: Pyromellitic dianhydride: a new organic anode of high electrochemical performances for lithium ion batteries. J. Power Sources 436, 226848 (2019)

    Google Scholar 

  9. Nevers, D.R., Brushett, F.R., Wheeler, D.R.: Engineering radical polymer electrodes for electrochemical energy storage. J. Power Sources 352, 226–244 (2017)

    Article  CAS  Google Scholar 

  10. Zhou, M., Pu, F., Wang, Z., Guan, S.: Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68, 185–194 (2014)

    Article  CAS  Google Scholar 

  11. Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C.M.B., Stephenson, T., Olsen, B.C., Mitlin, D.: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871–878 (2013)

    Article  CAS  Google Scholar 

  12. Cheng, L., Du, X., Jiang, Y., Vlad, A.: Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy 41, 193–200 (2017)

    Article  CAS  Google Scholar 

  13. BoopathiRaja, R., Parthibavarman, M.: Hetero-structure arrays of MnCo2O4 nanoflakes@nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J.Alloys Compound. 811, 152084 (2019)

    Google Scholar 

  14. Wu, J., Rui, X., Long, G., Chen, W., Yan, Q., Zhang, Q.: Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem. Int. Ed. 54, 7354–7358 (2015)

    Article  CAS  Google Scholar 

  15. Jin, Y., Zhao, C., Sun, Z., Lin, Y., Chen, L., Wang, D., Shen, C.: Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Adv. 6, 30763–30768 (2016)

    Article  CAS  Google Scholar 

  16. Sun, T., Li, Z.J., Wang, H.G., Bao, D., Meng, F.L., Zhang, X.B.: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016)

    Article  CAS  Google Scholar 

  17. Kolek, M., Otteny, F., Schmidt, P., Mück-Lichtenfeld, C., Einholz, C., Becking, J., Schleicher, E., Winter, M., Bieker, P., Esser, B.: Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 10, 2334–2341 (2017)

    Article  CAS  Google Scholar 

  18. Miller, J.R.: Perspective on electrochemical capacitor energy storage. Appl. Surf. Sci. 460, 3–7 (2018)

    Article  CAS  Google Scholar 

  19. Jiang, Y., Zhao, H., Yue, L., Liang, J., Li, T., Liu, Q., Luo, Y., Kong, X., Lu, S., Shi, X., Zhou, K., Sun, X.: Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 122, 106881 (2021)

    Google Scholar 

  20. Li, S., Lin, J., Xiong, W., Guo, X., Wu, D., Zhang, Q., Zhu, Q.L., Zhang, L.: Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord. Chem. Rev. 438, 213872 (2021)

    Google Scholar 

  21. Xu, L., Liu, R., Wang, F., Ge, X., Zhang, X., Qiao, L., Yang, J.: In-situ synthesis of porous organic polymer on rGO for high-performance capacitive energy storage. J. Energy Storage 25, 6–11 (2019)

    Article  Google Scholar 

  22. Sundriyal, S., Shrivastav, V., Bhardwaj, S.K., Mishra, S., Deep, A.: Tetracyanoquinodimethane doped copper-organic framework electrode with excellent electrochemical performance for energy storage applications. Electrochim. Acta 380, 138229 (2021)

    Google Scholar 

  23. Zhang, M., Zhou, W., Huang, W.: Characterization methods of organic electrode materials. J. Energy Chem. 57, 291–303 (2021)

    Article  Google Scholar 

  24. Lu, Y., Zhang, Q., Li, L., Niu, Z., Chen, J.: Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018)

    Article  CAS  Google Scholar 

  25. Vereshchagin, A.A., Vlasov, P.S., Konev, A.S., Yang, P., Grechishnikova, G.A., Levin, O.V.: Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices. Electrochim. Acta 295, 1075–1084 (2019)

    Article  CAS  Google Scholar 

  26. Pal, R., Goyal, S.L., Rawal, I., Gupta, A.K., Ruchi: Efficient energy storage performance of electrochemical supercapacitors based on polyaniline/graphene nanocomposite electrodes. J. Phys. Chem. Solids 154 110057 (2021)

    Google Scholar 

  27. Rauhala, T., Davodi, F., Sainio, J., Sorsa, O., Kallio, T.: On the stability of polyaniline/carbon nanotube composites as binder-free positive electrodes for electrochemical energy storage. Electrochim. Acta 336, 135735 (2020)

    Google Scholar 

  28. Du, Y., Wang, X., Man, J., Sun, J.: A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries. Mater. Lett. 272, 127813 (2020)

    Google Scholar 

  29. Zhang, F., Zhang, J., Ma, J., Zhao, X., Li, Y., Li, R.: Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Colloid Interface Sci. 593, 32–40 (2021)

    Article  CAS  Google Scholar 

  30. Gao, R., Tang, J., Yu, X., Tang, S., Ozawa, K., Sasaki, T., Qin, L.C.: In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage. Nano Energy 70, 104444 (2020)

    Google Scholar 

  31. Hu, C., Ma, K., Hu, Y., Chen, A., Saha, P., Jiang, H., Li, C.: Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy Environ. 6, 75–82 (2021)

    Article  Google Scholar 

  32. Ajdari, F.B., Kowsari, E., Ehsani, A.: Ternary nanocomposites of conductive polymer/functionalized GO/MOFs: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. J. Solid State Chem. 265, 155–166 (2018)

    Article  CAS  Google Scholar 

  33. Wei, X., Li, Y., Peng, H., Zhou, M., Ou, Y., Yang, Y., Zhang, Y., Xiao, P.: Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem. Eng. J. 341, 618–627 (2018)

    Article  CAS  Google Scholar 

  34. Zhou, J., Yu, X., Zhou, J., Lu, B.: Polyimide/metal-organic framework hybrid for high performance Al-organic battery. Energy Storage Mater. 31, 58–63 (2020)

    Article  Google Scholar 

  35. Srinivasan, R., Elaiyappillai, E., Nixon, E.J., Sharmila Lydia, I., Johnson, P.M.: Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorg. Chim. Acta 502, 119393 (2020)

    Google Scholar 

  36. Yao, M., Zhao, X., Zhang, Q., Zhang, Y., Wang, Y.: Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor. Electrochim. Acta 390, 138804 (2021).

    Google Scholar 

  37. Escobar, B., Martínez-Casillas, D.C., Pérez-Salcedo, K.Y., Rosas, D., Morales, L., Liao, S.J., Huang, L.L., Shi, X.: Research progress on biomass-derived carbon electrode materials for electrochemical energy storage and conversion technologies. Int. J. Hydrogen Energy 46, 26053–26073 (2021)

    Article  CAS  Google Scholar 

  38. Gao, M., Pan, S.Y., Chen, W.C., Chiang, P.C.: A cross-disciplinary overview of naturally derived materials for electrochemical energy storage. Mater. Today Energy 7, 58–79 (2018)

    Article  Google Scholar 

  39. Huang, J., Zhao, B., Liu, T., Mou, J., Jiang, Z., Liu, J., Li, H., Liu, M.: Wood-derived materials for advanced electrochemical energy storage devices. Adv. Func. Mater. 29, 1–23 (2019)

    CAS  Google Scholar 

  40. Chen, C., Hu, L.: Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51, 3154–3165 (2018)

    Article  CAS  Google Scholar 

  41. Peters, J.F., Baumann, M., Zimmermann, B., Braun, J., Weil, M.: The environmental impact of Li-Ion batteries and the role of key parameters—a review. Renew. Sustain. Energy Rev. 67, 491–506 (2017)

    Article  CAS  Google Scholar 

  42. Nowotny, J., Dodson, J., Fiechter, S., Gür, T.M., Kennedy, B., Macyk, W., Bak, T., Sigmund, W., Yamawaki, M., Rahman, K.A.: Towards global sustainability: education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 81, 2541–2551 (2018)

    Article  Google Scholar 

  43. Luo, J., Hu, B., Hu, M., Zhao, Y., Liu, T.L.: Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240 (2019)

    Article  CAS  Google Scholar 

  44. Chen, L.F., Feng, Y., Liang, H.W., Wu, Z.Y., Yu, S.H.: Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv. Energy Mater. 7, 1–31 (2017)

    Google Scholar 

  45. Acar, C.: A comprehensive evaluation of energy storage options for better sustainability. Int. J. Energy Res. 42, 3732–3746 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Researchers CONACYT program and the Center for Research and Technological Development in Electrochemistry for the facilities provided for the development of this work. The authors also want to thank R. R. Lindeke, Ph.D. Professor Emeritus, MIE@UMD RPC Volunteer Mexico and RPC Volunteer Uganda for his English revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Martínez-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandoval-González, A., Bustos, E., Martínez-Sánchez, C. (2022). Basic and Advanced Considerations of Energy Storage Devices. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_4

Download citation

Publish with us

Policies and ethics