Skip to main content
Log in

3D shape of BiVO4-GO nanocomposite for excellent photocatalytic performance on standard and industrial dyes under visible light

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this investigation, 3D shaped BiVO4-GO composites have been set up with various proportions of BiVO4 by an altered hydrothermal strategy. This example is described by X-ray diffraction (XRD), Scanning electron microscopy (SEM), FT-IR, UV–Vis diffuse reflectance spectra (DRS), Raman spectroscopy, transmission electron microscopy (TEM) procedures and UV–Vis spectroscopy. BiVO4 could cover well on the outside of graphene sheets. BiVO4-GO composites with a reasonable expansion measure of BiVO4 indicated higher photocatalytic movement than plain BiVO4 toward fluid stage corruption of methylene blue (MB), texbrite BAC-L and texbrite NFW-L under obvious light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Liu, L. Xie, Z. Liu, G. Du, A.M. Asiri, X. Sun, A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Commun. 53(92), 12446–12449 (2017)

    CAS  Google Scholar 

  2. Y. Huang, X. Zheng, S. Feng, Z. Guo, S. Liang, Enhancement of rhodamine B removal by modifying activated carbon developed from Lythrum salicaria L. with pyruvic acid. Colloids Surf., A 489, 154–162 (2016)

    CAS  Google Scholar 

  3. G. Muthuraman, T.T. Teng, Extraction and recovery of rhodamine B, methyl violet and methylene blue from industrial wastewater using D2EHPA as an extractant. J. Ind. Eng. Chem. 15(6), 841–846 (2009)

    CAS  Google Scholar 

  4. L. Du, J. Wu, C. Hu, Electrochemical oxidation of rhodamine B on RuO2–PdO–TiO2/Ti electrode. Electrochim. Acta 68, 69–73 (2012)

    CAS  Google Scholar 

  5. K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G.E. Beheir, M. Refaat, Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Res. 44(5), 1449–1461 (2010)

    CAS  Google Scholar 

  6. Y. Zhang, J. Wang, L. Wang, R. Feng, F. Zhang, Study on adsorption properties of QCS/PS-G8-2-8 anion exchange membrane for Rhodamine B. J. Mol. Struct. 1089, 116–123 (2015)

    CAS  Google Scholar 

  7. M. Ahmad, E. Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N.R. Khalid, Ultrason. Sonochem. 21, 761 (2014)

    CAS  Google Scholar 

  8. B. Cuiping, X. Xianfeng, G. Wenqi, F. Dexin, X. Mo, G. Zhongxue, X. Nian, Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 278(1–3), 84–90 (2011)

    Google Scholar 

  9. X. Wang, J. Wang, P. Guo, W. Guo, C. Wang, Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J. Hazardous Mater. 169(1–3), 486–491 (2009)

    CAS  Google Scholar 

  10. K.P. Mishra, P.R. Gogate, Sep. Purif. Technol. 75, 385 (2010)

    CAS  Google Scholar 

  11. S. Sachdeva, A. Kumar, Preparation of nanoporous composite carbon membrane for separation of rhodamine B dye. J. Membr. Sci. 329(1–2), 2–10 (2009)

    CAS  Google Scholar 

  12. S.K. Das, P. Ghosh, I. Ghosh, A.K. Guha, Adsorption of rhodamine B on Rhizopus oryzae: Role of functional groups and cell wall components. Colloids Surf. B: Biointerfaces 65(1), 30–34 (2008)

    CAS  Google Scholar 

  13. J.X. Yu, B.H. Li, X.M. Sun, J. Yuan, R. Chi, J. Hazard. Mater. 168, 1147 (2009)

    CAS  Google Scholar 

  14. M. Zamouche, O. Hamdaoui, Sorption of Rhodamine B by cedar cone: effect of pH and ionic strength. Energy Procedia 18, 1228–1239 (2012)

    CAS  Google Scholar 

  15. S. Fang, K. Lv, Q. Li, H. Ye, D. Du, M. Li, Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. Appl. Surface Sci. 358, 336–342 (2015)

    CAS  Google Scholar 

  16. S. Rasalingam, R. Peng, R.T. Koodali, Appl. Catal. B. 174, 49 (2015)

    Google Scholar 

  17. Z. Zhang, S. Zhai, M. Wang, H. Ji, L. He, C. Ye, C. Wang, S. Fang, H. Zhang, Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. J. Alloy. Compd. 659, 101–111 (2016)

    CAS  Google Scholar 

  18. M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151(1–3), 10–18 (2009)

    CAS  Google Scholar 

  19. B. Yuan, J. Wei, T. Hu, H. Yao, Z. Jiang, Z. Fang, Z. Chu, Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B. Chin. J. Catal. 36(7), 1009–1016 (2015)

    CAS  Google Scholar 

  20. L. Hu, F. Chen, P. Hu, L. Zou, X. Hu, Hydrothermal synthesis of SnO2/ZnS nanocomposite as a photocatalyst for degradation of Rhodamine B under simulated and natural sunlight. J. Mol. Catal. A: Chem. 411, 203–213 (2016)

    CAS  Google Scholar 

  21. J. Luan, M. Li, K. Ma, Y. Li, Z. Zou, Photocatalytic activity of novel Y2InSbO7 and Y2GdSbO7 nanocatalysts for degradation of environmental pollutant rhodamine B under visible light irradiation. Chem. Eng. J. 167(1), 162–171 (2011)

    CAS  Google Scholar 

  22. L. Hu, F. Yang, L. Zou, H. Yuan, X. Hu, Chin. J. Catal. 36, 1785 (2015)

    CAS  Google Scholar 

  23. S.V. Mohite, V.V. Ganbavle, K.Y. Rajpure, Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO3 photoelectrode. J. Alloys Compd. 655, 106–113 (2016)

    CAS  Google Scholar 

  24. Q. Wang, L. Zheng, Y. Chen, J. Fan, H. Huang, B. Su, J. Alloys Compd. 637, 127 (2015)

    CAS  Google Scholar 

  25. J. Tang, D. Li, Z. Feng, C. Long, HgI2: a novel photocatalyst with high performance in degradation of rhodamine B dyes under visible-light irradiation. J. Alloy. Compd. 653, 310–314 (2015)

    CAS  Google Scholar 

  26. L. Liu, Y. Wang, W. An, J. Hu, W. Cui, Y. Liang, Photocatalytic activity of PbS quantum dots sensitized flower-like Bi2WO6 for degradation of Rhodamine B under visible light irradiation. J. Mol. Catal. A: Chem. 394, 309–315 (2014)

    CAS  Google Scholar 

  27. W. Cui, H. Wang, Y. Liang, B. Han, L. Liu, J. Hu, Microwave-assisted synthesis of Ag@ AgBr-intercalated K4Nb6O17 composite and enhanced photocatalytic degradation of Rhodamine B under visible light. Chem. Eng. J. 230, 10–18 (2013)

    CAS  Google Scholar 

  28. L. Zhang, J. Long, W. Pan, S. Zhou, J. Zhu, Y. Zhao, X. Wang, G. Cao, Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Mater. Chem. Phys. 136(2–3), 897–902 (2012)

    CAS  Google Scholar 

  29. J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao, S. Zhang, Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl. Mater. Interfaces. 4(7), 3636–3642 (2012)

    CAS  Google Scholar 

  30. P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang, M. Lei, Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance. ACS Appl. Mater. Interfaces. 5(8), 2924–2929 (2013)

    CAS  Google Scholar 

  31. H. Pan, X. Li, Z. Zhuang, C. Zhang, g-C3N4/SiO2–HNb3O8 composites with enhanced photocatalytic activities for rhodamine B degradation under visible light. J. Mol. Catal. A: Chem. 345(1–2), 90–95 (2011)

    CAS  Google Scholar 

  32. J. Wang, J. Yang, X. Li, B. Wei, D. Wanga, H. Song, H. Zhai, X. Li, J. Mol. Catal. A Chem. 406, 97 (2015)

    CAS  Google Scholar 

  33. J. Ma, Q. Liu, L. Zhu, J. Zou, K. Wang, M. Yang, S. Komarneni, Visible light photocatalytic activity enhancement of Ag3PO4 dispersed on exfoliated bentonite for degradation of rhodamine B. Appl. Catal. B: Environ. 182, 26–32 (2016)

    CAS  Google Scholar 

  34. Y. Zhang, ACS Nano 5, 7426 (2011)

    CAS  Google Scholar 

  35. Y. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11), 9777–9789 (2012)

    CAS  Google Scholar 

  36. W.S. Wang, J. Phys. Chem. C 116, 19893 (2012)

    CAS  Google Scholar 

  37. S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10(1), 73 (2015)

    Google Scholar 

  38. Y. Wang, W. Wang, H. Mao, Y. Lu, J. Lu, J. Huang, Z. Ye, B. Lu, Electrostatic self-assembly of BiVO4–reduced graphene oxide nanocomposites for highly efficient visible light photocatalytic activities. ACS Appl. Mater. Interfaces. 6(15), 12698–12706 (2014)

    CAS  Google Scholar 

  39. S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 13(12), 4624–4628 (2001)

    CAS  Google Scholar 

  40. X. Zhu, F. Zhang, M. Wang, X. Gao, Y. Luo, J. Xue, Y. Zhang, J. Ding, S. Sun, J. Bao, C. Gao, A shuriken-shaped m-BiVO4/{0 0 1}–TiO2 heterojunction: synthesis, structure and enhanced visible light photocatalytic activity. Appl. Catal. A 521, 42–49 (2016)

    CAS  Google Scholar 

  41. S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015)

    CAS  Google Scholar 

  42. K. Alam, Y. Sim, J.H. Yu, J. Gnanaprakasam, H. Choi, Y. Chae, U. Sim, H. Cho, In-situ deposition of graphene oxide catalyst for efficient photoelectrochemical hydrogen evolution reaction using atmospheric plasm. Materials (2020). https://doi.org/10.3390/ma13010013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Chun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, WC., Biswas, M.R.U.D. 3D shape of BiVO4-GO nanocomposite for excellent photocatalytic performance on standard and industrial dyes under visible light. J. Korean Ceram. Soc. 58, 662–671 (2021). https://doi.org/10.1007/s43207-021-00116-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00116-6

Keywords

Navigation