Skip to main content
Log in

Synthesis of BiVO4-GO-PTFE nanocomposite photocatalysts for high efficient visible-light-induced photocatalytic performance for dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A BiVO4-GO-PTFE photocatalyst was prepared by a facile one-step hydrothermal method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, UV–Vis spectroscopy, and transmission electron microscopy techniques. The results showed that bulk monoclinic needle-like BiVO4 and poly-tetrafluoroethylene (PTFE) nanoparticles with a uniform size distribution could be loaded on graphene oxide (GO) sheets to facilitate the transport of electrons photogenerated in BiVO4, thereby reducing the rate of the recombination of the photogenerated charge carriers in the coupled BiVO4-GO-PTFE (BGP) composite system. PTFE nanoparticles were dispersed on the surface of the GO sheets, which exhibited a localized surface plasmon resonance phenomenon and enhanced visible light absorption. The removal efficiency of dye (MB, RhB, RBB) by (BiVO4-GO-PTFE-30%) BGP-30% (90%) was much higher than that by BGP-25% (85%), BGP-15% (76%), and BGP-10% (64%) under visible light irradiation. Recycle experiments showed that the composite still presented significant photocatalytic activity after five successive cycles. Finally, we propose a possible pathway and mechanism for the photocatalytic degradation of dyes using the composite photocatalyst under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Zhang, P. Wang, J. Sun, Y. Jin, High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and h2 production from water. ACS Appl. Mater. Interfaces 6, 19905–19913 (2014)

    Google Scholar 

  2. R. Wang, G. Jiang, Y. Ding, Y. Wang, X. Sun, X. Wang, W. Chen, Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 4154–4158 (2011)

    Article  Google Scholar 

  3. Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl. Catal. B 105, 335–345 (2011)

    Article  Google Scholar 

  4. P. Manjula, R. Boppella, S.V. Manorama, A facile and green approach for the controlled synthesis of porous SnO(2) nanospheres: application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl. Mater. Interfaces 4, 6252–6260 (2012)

    Article  Google Scholar 

  5. H. Kim, H.-Y. Yoo, S. Hong, S. Lee, S. Lee, B.-S. Park, H. Park, C. Lee, J. Lee, Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation. Appl. Catal. B 162, 515–523 (2015)

    Article  Google Scholar 

  6. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  7. Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: an important environmental engineering material. J. Environ. Sci. 26, 2139–2177 (2014)

    Article  Google Scholar 

  8. H. Jiang, H. Dai, X. Meng, L. Zhang, J. Deng, Y. Liu, C.T. Au, Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. J. Environ. Sci. 24, 449–457 (2012)

    Article  Google Scholar 

  9. G.P. Nagabhushana, G. Nagaraju, G.T. Chandrappa, Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A 1, 388(2013)

    Article  Google Scholar 

  10. A. Martínez-de la Cruz, U.M. García-Pérez, S. Sepúlveda-Guzmán, Characterization of the 14 visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method. Res. Chem. Intermed. 39, 881–894 (2012)

    Article  Google Scholar 

  11. Z. Zhao, Z. Li, Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746–4753 (2011)

    Article  Google Scholar 

  12. Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013)

    Article  Google Scholar 

  13. S. Sarkar, S. Garain, D. Mandal, K.K. Chattopadhyay, Electro-active phase formation in PVDF-BiVO4 flexible nanocomposite films for high energy density storage application. RSC Adv. 4, 48220–48227 (2014)

    Article  Google Scholar 

  14. C. Yin, S. Zhu, Z. Chen, W. Zhang, J. Gu, D. Zhang, One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation, J. Mater. Chem. A 1, 8367 (2013)

    Article  Google Scholar 

  15. S. Obregon, S.W. Lee, G. Colon, Exalted photocatalytic activity of tetragonal BiVO4 by Er3 + doping through a luminescence cooperative mechanism. Dalton Trans. 43, 311–316 (2014)

    Article  Google Scholar 

  16. Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, S.-F. Yin, Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem. Eng. J. 255, 394–402 (2014)

    Article  Google Scholar 

  17. L. Ge, Mater. Chem. Phys. 107, 465–470 (2008)

    Article  Google Scholar 

  18. H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, J. Eur. Ceram. Soc. 28, 2955–2962 (2008)

    Article  Google Scholar 

  19. W.T. Sun, M.Z. Xie, L.Q. Jing, Y.B. Luan, H.G. Fu, J. Solid State Chem. 184, 3050–3054 (2011)

    Article  Google Scholar 

  20. K.C. Patil, S.T. Aruna, T. Mimani, Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002)

    Article  Google Scholar 

  21. S.B. Gawande, S.R. Thakare, Graphene wrapped BiVO4 photocatalyst and its enhanced performance under visible light irradiation. Int. Nano Lett. 2, 1–7 (2012)

    Article  Google Scholar 

  22. Q. Yu, Z.-R. Tang, Y.-J. Xu, Synthesis of BiVO4 nanosheets-graphene composites toward improved visible light photoactivity. J. Energy Chem. 23, 564–574 (2014)

    Article  Google Scholar 

  23. G.W. Ehrenstein, R.P. Theriault, Polymeric Materials: Structure, Properties, Applications (Hanser Verlag, Munich, 2001), pp. 67–78. ISBN 1-56990-310-7.

    Book  Google Scholar 

  24. D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Mater. Chem. Phys. 132, 673–681 (2012)

    Google Scholar 

  25. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  26. Y. Yan, S. Sun, Y. Song, X. Yan, W. Guan, X. Liu, W. Shi, Microwave-assisted in situ synthesis of reduced graphene oxide–BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. J. Hazard. Mater. 250, 106–114 (2013)

    Article  Google Scholar 

  27. Z.D. Meng, W.C. Oh, Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic in- tensity. Ultrason. Sonochem. 18, 757–764 (2011)

    Article  Google Scholar 

  28. G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-Assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Article  Google Scholar 

  29. S. Rabieh, K. Nassimi, M. Bagheri, Synthesis of hierarchical ZnO-reduced graphene oxide nanocomposites with enhanced adsorption-photocatalytic performance. Mater. Lett. 162, 28–31 (2016)

    Article  Google Scholar 

  30. P. Wang, J. Wang, X.F. Wang, H.G. Yu, J.G. Yu, M. Lei, One-step synthesis of easy- recycling TiO2 -rGO nanocomposite photocatalysts with enhanced photo- catalytic activity. Appl. Catal. B 132–133, 452–459 (2013)

    Article  Google Scholar 

  31. W. Su, X. Lu, S. Jia, J. Wang, H. Ma, Y. Xing, Catalytic reduction of NOX over TiO2-graphene oxide supported with MnOX at low temperature. Catal. Lett. 145(7), 1446–1456 (2015)

    Article  Google Scholar 

  32. Y. Xu, Y. Mo, J. Tian, P. Wang, H. Yu, J. Yu, The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl. Catal. B: Environ. 181, 810–817 (2016)

    Article  Google Scholar 

  33. S. Yousefzadeh, M. Faraji, A.Z. Moshfegh, Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications. J. Electroanal. Chem. 763, 1–9 (2016)

    Article  Google Scholar 

  34. L. Chen, S.-F. Yin, R. Huang, Q. Zhang, S.-L. Luo, C.-T. Au, Hollow peanut-like m-BiVO4: facile synthesis and solar-light-induced photocatalytic property. CrystEngComm 14, 4217–4222 (2012)

    Article  Google Scholar 

  35. F.T. Johra, W.G. Jung, RGO-TiO2 -ZnO composites: synthesis, characterization, and application to photocatalysis. Appl. Catal. A 491, 52–57 (2015)

    Article  Google Scholar 

  36. M. Azarang, A. Shuhaimi, R. Yousefi, A.M. Golsheikh, M. Sookhakian, Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram. Int. 40, 10217–10221 (2014)

    Article  Google Scholar 

  37. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10, 577–583 (2010)

    Article  Google Scholar 

  38. V. Augugliaro, M. Litter, L. Palmisano, J. Soria, The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J. Photochem. Photobiol. C 7, 127–144 (2016)

    Article  Google Scholar 

  39. D.H. Kim, D. Choi, S. Kim, K.S. Lee, The effect of phase type on photocatalytic activity in transition metal doped TiO2 nanoparticles. Cat. Commun. 9, 654–657 (2008)

    Article  Google Scholar 

  40. J. Yang, H. Bai, Q. Jiang, J. Lian, Visible-light photocatalysis in nitrogen–carbon-doped TiO2 films obtained by heating TiO2 gel film in an ionized N2 gas. Thin Solid Films 516, 1736–1742 (2008)

    Article  Google Scholar 

  41. D. Jiang, Y. Xu, B. Hou, D. Wu, Y. Sun, Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification. J. Solid State Chem. 180, 1787–1791 (2007)

    Article  Google Scholar 

  42. R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, Improvement of eosin visible light degradation using PbS-sensititized TiO2. J. Photochem. Photobiol. A 194, 173–180 (2008)

    Article  Google Scholar 

  43. C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments 49(2), 117–125 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Chun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowla, B.M.R.U., Cho, J.Y., Jang, W.K. et al. Synthesis of BiVO4-GO-PTFE nanocomposite photocatalysts for high efficient visible-light-induced photocatalytic performance for dyes. J Mater Sci: Mater Electron 28, 15106–15117 (2017). https://doi.org/10.1007/s10854-017-7386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7386-4

Navigation