Skip to main content

Advertisement

Log in

Characterization of porous sintered reaction-bonded silicon nitride containing three different rare-earth oxides

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The effect of rare-earth oxides on the characteristics of porous sintered reaction-bonded silicon nitride (SRBSN) was investigated. Three types of raw Si powder mixtures containing different rare-earth oxide (La2O3, Er2O3, and Yb2O3) were prepared and nitrided in the form of compacts. The nitriding profiles of the respective raw powder mixtures with elevating temperature indicated that Yb2O3 clearly promoted the nitridation of Si compacts at low temperature compared with other rare-earth oxides, and the β-Si3N4 ratio after completion of the nitriding reaction was different at which temperature the major nitridation occurred. Yb2O3 was found to be the most effective additive to achieve a strong porous SRBSN, having the flexural strength of 441 MPa. The reason why Yb2O3 promotes the nitridation reaction and has excellent mechanical properties after post-sintering is that oxygen was removed during the nitriding reaction, which was supported by the analysis of oxygen content via the laser-induced breakdown spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Barta, M. Manela, R. Fischer, Si3N4 and Si2N2O for high performance radomes. Mater. Sci. Eng. 71, 265–272 (1985)

    Article  CAS  Google Scholar 

  2. R.K. Frazer, Evaluation of silicon nitride as an advanced radome material. Johns Hopkins APL Tech Digest 13, 393–399 (1992)

    Google Scholar 

  3. K.K. Kandi, N. Thallapalli, S.P.R. Chilakalapalli, Development of silicon nitride-based ceramic radomes—a review. Int. J. Appl. Ceram. Technol. 12, 909–920 (2015)

    Article  CAS  Google Scholar 

  4. Xu Jie, D. Zhu, Fa Luo, W. Zhou, P. Li, Dielectric properties of porous reaction-bonded Si3N4 ceramics with controlled porosity and pore size. J. Mater. Sci. Technol. 24, 207–210 (2008)

    Google Scholar 

  5. S. Ding, Y.-P. Zeng, D. Jiang, Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Mater. Lett. 61, 2277–2280 (2007)

    Article  CAS  Google Scholar 

  6. Y. Xia, Y.-P. Zeng, D. Jiang, Dielectric and mechanical properties of porous Si3N4 ceramics prepared via low temperature sintering. Ceram. Int. 35, 1699–1703 (2009)

    Article  CAS  Google Scholar 

  7. T. Ohji, Microstructural design and mechanical properties of porous silicon nitride ceramics. Mater. Sci. Eng. A 498, 5–11 (2008)

    Article  Google Scholar 

  8. Z.L. Hong, H. Yoshida, Y. Ikuhara, T. Sakuman, T. Nishimura, M. Mitomo, The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J. Eur. Ceram. Soc. 22(4), 527–534 (2002)

    Article  CAS  Google Scholar 

  9. N. Kondo, Y. Inagaki, Y. Suzuki, T. Ohji, Fabrication and mechanical properties of porous anistropic silicon nitride with lutetia additive. J. Ceram. Soc. Jpn. 112(6), 316–320 (2004)

    Article  CAS  Google Scholar 

  10. Y. Xia, Y.-P. Zeng, D. Jiang, Mechanical and dielectric properties of porous Si3N4 ceramics using PMMA as pore former. Ceram. Int. 37, 3775–3779 (2011)

    Article  CAS  Google Scholar 

  11. A. Diaz, S. Hamshire, J.F. Yang, T. Ohji, S. Kanzaki, Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes. J. Am. Ceram. Soc. 88(3), 698–706 (2005)

    Article  CAS  Google Scholar 

  12. Y. Inagaki, N. Kondo, T. Ohji, High performance porous silicon nitrides. J. Eur. Ceram. Soc. 22, 2489–2494 (2002)

    Article  CAS  Google Scholar 

  13. N. Kondo, Y. Suzuki, T. Ohji, High-strength porous silicon nitride fabricated by the sinter-forging technique. J. Mater. Res. 16(1), 32–34 (2001)

    Article  CAS  Google Scholar 

  14. C. Kawai, A. Yamakawa, Effect of porosity and microstructure on the strength of Si3N4: designed microstructure for high strength, high thermal shock resistance, and facile machining. J. Am. Ceram. Soc. 80(10), 2705–2708 (1997)

    Article  CAS  Google Scholar 

  15. D. Yao, Y. Xia, K.-H. Zuo, D. Jiang, J. Gunster, Y.-P. Zeng, J.G. Heinrich, The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics. J. Eur. Ceram. Soc. 34, 3461–3467 (2014)

    Article  CAS  Google Scholar 

  16. D. Yao, Y. Xia, Y.-P. Zeng, K.-H. Zuo, D. Jiang, Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride. Ceram. Int. 37, 3071–3076 (2011)

    Article  CAS  Google Scholar 

  17. Xu Jie, Fa Luo, D. Zhu, Su Xiaolei, W. Zhou, Effect of presintering on the dielectric and mechanical properties of porous reaction-bonded silicon nitride. Mater. Sci. Eng. A 488, 167–171 (2008)

    Article  Google Scholar 

  18. US 5780374, High-strength porous silicon nitride body and process for producing the same

  19. P.F. Becher, G.S. Painter, N. Shibata, R.L. Satet, M.J. Hoffmann, S.J. Pennycook, Influence of additives on anisotropic grain growth in silicon nitride ceramics. Mater. Sci. Eng. A 422, 85–91 (2006)

    Article  Google Scholar 

  20. C.P. Gazzara, D.R. Messier, Determination of phase content of Si3N4 by X-ray diffraction analysis. Am. Ceram. Soc. Bull. 56(9), 777–780 (1977)

    CAS  Google Scholar 

  21. M. Muller, W. Bauer, R. Knitter, Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN) Part 1: factors influencing the reaction-bonding process. Ceram. Int. 35(7), 2577–2585 (2009)

    Article  Google Scholar 

  22. H.N. Kim, J.W. Ko, J.M. Kim, Y.J. Park, J.W. Lee, H.D. Kim, S.S. Baek, S.J. Lee, I.S. Seo, Enhanced nitridation of silicon compacts by Yb2O3 addition. Ceram. Int. 42(6), 7072–7079 (2016)

    Article  CAS  Google Scholar 

  23. C. Matsunaga, Y. Zhou, D. Kusano, H. Hyuga, K. Hirao, Nitridation behavior of silicon powder compacts of various thicknesses with Y2O3 and MgO as sintering additives. Int. J. Appl. Ceram. Tech. 14(6), 1157–1163 (2017)

    Article  CAS  Google Scholar 

  24. M.N. Rahaman, A.J. Moulson, The removal of surface silica and its effect on the nitridation of high-purity silicon. J. Mater. Sci. 19, 189–194 (1984)

    Article  CAS  Google Scholar 

  25. S.M. Boyer, A.J. Moulson, A mechanism for the nitridation of Fe-contaminated silicon. J. Mater. Sci. 13, 1637–1646 (1978)

    Article  CAS  Google Scholar 

  26. H.N. Kim, Y.J. Park, J.M. Kim, J.W. Lee, J.W. Ko, H.D. Kim, S.J. Lee, S.S. Baek, I.S. Seo, The catalytic role of additive components for the nitridation of silicon/additive mixture. J. Ceram. Soc. Jpn. 124(3), 192–196 (2016)

    Article  CAS  Google Scholar 

  27. H. Hyuga, Y. Zhou, D. Kusano, K. Hirao, H. Kita, Nitridation behaviors of silicon powder doped with various rare earth oxides. J. Ceram. Soc. Jpn. 119(3), 251–253 (2011)

    Article  CAS  Google Scholar 

  28. B.W. Sheldon, J. Szekely, J.S. Haggerty, Formation of reaction-bonded silicon nitride from silane-derived silicon powders: macroscopic kinetics and related transport phenomena. J. Am. Ceram. Soc. 75(3), 677–685 (1992)

    Article  CAS  Google Scholar 

  29. G. Adachi, N. Imanaka, The binary rare earth oxide. Chem. Rev. 98, 1479–1514 (1998)

    Article  CAS  Google Scholar 

  30. N.A. Pushkarevsky, M.A. Ogienko, A.I. Smolentsev, I.N. Novozhilov, A. Witt, M.M. Khusniyarov, V.K. Cherkasov, S.N. Konchenko, Cooperative reduction by Ln2+ and Cp*-ions: synthesis and properties of Sm, Eu and Yb complexes with 3,6-di-tert-butyl-o-benzoquinone. Dalton Trans. 45, 1269–1278 (2016)

    Article  CAS  Google Scholar 

  31. Z. Xialong, N. Zhaoai, C. Bin, Studies of stability of lanthanum oxalates by temperature programmed thermolysis. J. Fuzhou Univ. 25, 92–96 (1997)

    Google Scholar 

  32. K.P. Plucknett, M. Quinlan, L. Garrido, L. Genova, Microstructural development in porous b-Si3N4 ceramics prepared with low volume RE2O3–MgO–(CaO) additions (RE=La, Nd, Y, Yb). Mater. Sci. Eng. A 489, 337–350 (2008)

    Article  Google Scholar 

  33. J. Dai, J. Li, Y. Chen, L. Yang, G. Sun, Preparation of the rod-like b-Si3N4 particles favoring the self-reinforcing Si3N4 ceramics. Mater. Res. Bull. 38, 609–615 (2003)

    Article  CAS  Google Scholar 

  34. M. Kitayama, K. Hirao, S. Kanzaki, Effect of rare earth oxide additives on the phase transformation rates of Si3N4. J. Am. Ceram. Soc. 89, 2612–2618 (2006)

    Article  CAS  Google Scholar 

  35. S.H. Rhee, J.D. Lee, D.Y. Kim, Effect of a-Si3N4 initial powder size on the microstructural evolution and phase transformation during sintering of Si3N4 ceramics. J. Eur. Ceram. Soc. 20, 1787–1794 (2000)

    Article  CAS  Google Scholar 

  36. U. Kolitsch, H.J. Seifert, T. Ludwig, F. Aldinger, Phase equilibria and crystal chemistry in the Y2O3–Al2O3–SiO2 system. J. Mater. Res. 14, 447–455 (1999)

    Article  CAS  Google Scholar 

  37. J.F. Yang, Z.Y. Deng, T. Ohji, Fabrication and characterization of porous silicon nitride ceramics using Yb2O3 as sintering additive. J. Eur. Ceram. Soc. 23, 371–437 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Fundamental Research Program of Korea Institute of Materials Science (Grant no. PNK6830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha-Neul Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HN., Kim, MJ., Park, YJ. et al. Characterization of porous sintered reaction-bonded silicon nitride containing three different rare-earth oxides. J. Korean Ceram. Soc. 58, 77–85 (2021). https://doi.org/10.1007/s43207-020-00072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00072-7

Keywords

Navigation