Skip to main content
Log in

Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) was synthesized through the precipitation method and different processing parameters (Ca/P molar ratio, pH, and reaction temperature) were varied to investigate their influence on the HA formation. No HA powder was obtained at pH 10 and 25 °C, even when using a Ca/P ratio as high as 2.2. However, HA powders were successfully produced at pH above 11, 25 °C, and Ca/P ratio of 2.2. At pH 10 and 25 °C, the concentration of the H+ ions in the reaction solution increased and so did the Ca loss, resulting Ca-deficient hydroxyapatite (CdHA) formation. While HA was formed instead due to a lower Ca loss when the pH was increased to 11 and 11.3. As the reaction temperature was increased to 70 and 90 °C, the HA formation occurred regardless of the pH because of the decreased solubility of HA in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.V. Dorozhkin, Calcium orthophosphates in nature, biology and medicine. Materials 2, 399–498 (2009)

    CAS  Google Scholar 

  2. H. Guler, G. Gundogmaz, F. Kurtulus, G. Celik, S.S. Gacanoglu, Solid state synthesis of calcium borohydroxyapatite. Solid State Sci. 13, 1916–1920 (2011)

    Google Scholar 

  3. X.J. Guo, H.D. Yan, S.G. Zhao, L. Zhang, Y.T. Li, X.H. Liang, Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv. Powder Technol. 24, 1034–1038 (2013)

    CAS  Google Scholar 

  4. S. Kannan, J.M.F. Ferreira, Synthesis and thermal stability of hydroxyapatite-β-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine. Chem. Mater. 18, 198–203 (2006)

    CAS  Google Scholar 

  5. I.H. Arita, V.M. Castano, D.S. Wilkinson, Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity. J. Mater. Sci. Mater. Med. 6, 19–23 (1995)

    CAS  Google Scholar 

  6. B. Yeong, J.M. Xue, J. Wang, Mechanochemical synthesis of hydroxyapatite from calcium oxide and brushite. J. Am. Ceram. Soc. 84, 465–467 (2001)

    CAS  Google Scholar 

  7. H. El Briak-BenAbdeslam, M.P. Ginebra, M. Vert, P. Boudeville, Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD-CaO reaction kinetics. Acta Biomater. 4, 378–386 (2008)

    Google Scholar 

  8. M. Toriyama, A. Ravaglioli, A. Krajewski, G. Celotti, A. Piancastelli, Synthesis of hydroxyapatite-based powders by mechano-chemical method and their sintering. J. Eur. Ceram. Soc. 16, 429–436 (1996)

    CAS  Google Scholar 

  9. Y.X. Pang, X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23, 1697–1704 (2003)

    CAS  Google Scholar 

  10. E. Bouyer, F. Gitzhofer, M.I. Boulos, Morphological study of hydroxyapatite nanocrystal suspension. J. Mater. Sci. Mater. Med. 11, 523–531 (2000)

    CAS  Google Scholar 

  11. C.S. Liu, Y. Huang, W. Shen, J.H. Cui, Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials 22, 301–306 (2001)

    CAS  Google Scholar 

  12. A.L. Boskey, A.S. Posner, Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J. Phys. Chem. 77, 2313–2317 (1973)

    CAS  Google Scholar 

  13. M.A. Martins, C. Santos, M.M. Almeida, M.E.V. Costa, Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. J. Colloid Interf. Sci. 318, 210–216 (2008)

    CAS  Google Scholar 

  14. C. Santos, M.M. Almeida, M.E. Costa, Morphological evolution of hydroxyapatite particles in the presence of different citrate:calcium ratios. Cryst. Growth Des. 15, 4417–4426 (2015)

    CAS  Google Scholar 

  15. J.B. Liu, X.Y. Ye, H. Wang, M.K. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29, 629–633 (2003)

    CAS  Google Scholar 

  16. T.A. Kuriakose, S.N. Kalkura, M. Palanichamy, D. Arivuoli, K. Dierks, G. Bocelli, C. Betzel, Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature. J. Cryst. Growth 263, 517–523 (2004)

    CAS  Google Scholar 

  17. M.N. Hassan, M.M. Mahmoud, A. Abd El-Fattah, S. Kandil, Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram. Int. 42, 3725–3744 (2016)

    CAS  Google Scholar 

  18. Y. Wibisono, N.L.B. Dwijaksara, W.B. Widayatno, A.S. Wismogroho, M.I. Amal, N.T. Rochman, T. Nishimura, A. Noviyanto, Synthesis and sinterability of hydroxyapatite from fishery by-products. J. Korean Ceram. Soc. 55, 570–575 (2018)

    CAS  Google Scholar 

  19. B. Ben-Nissan, Natural bioceramics: from coral to bone and beyond. Curr. Opin. Solid State Mater. 7, 283–288 (2003)

    CAS  Google Scholar 

  20. B. Ben-Nissan, A. Milev, R. Vago, Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25, 4971–4975 (2004)

    CAS  Google Scholar 

  21. P.P. Wang, C.H. Li, H.Y. Gong, X.R. Jiang, H.Q. Wang, K.X. Li, Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 203, 315–321 (2010)

    CAS  Google Scholar 

  22. L.Y. Huang, K.W. Xu, J. Lu, A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 11, 667–673 (2000)

    CAS  Google Scholar 

  23. G.K. Lim, J. Wang, S.C. Ng, L.M. Gan, Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant. J. Mater. Chem. 9, 1635–1639 (1999)

    CAS  Google Scholar 

  24. I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield, Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate. J. Mater. Sci. Mater. Med. 11, 799–804 (2000)

    CAS  Google Scholar 

  25. S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23, 1065–1072 (2002)

    CAS  Google Scholar 

  26. W.P.S.L. Wijesinghe, M.M.M.G.P.G. Mantilaka, E.V.A. Prernalal, H.M.T.U. Herath, S. Mahalingam, M. Edirisinghe, R.P.V.J. Rajapakse, R.M.G. Rajapakse, Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Mat. Sci. Eng. C Mater. 42, 83–90 (2014)

    CAS  Google Scholar 

  27. M.C. Wang, W.J. Shih, I.M. Hung, H.T. Chen, M.H. Hon, H.H. Huang, Characterization of calcium phosphate apatite with variable Ca/P ratios sintered at low temperature. Ceram. Int. 41, 1223–1233 (2015)

    CAS  Google Scholar 

  28. N. Puvvada, P.K. Panigrahi, H. Kalita, K.R. Chakraborty, A. Pathak, Effect of temperature on morphology of triethanolamine-assisted synthesized hydroxyapatite nanoparticles. Appl. Nanosci. 3, 203–209 (2013)

    CAS  Google Scholar 

  29. R. Kumar, K.H. Prakash, P. Cheang, K.A. Khor, Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 20, 5196–5200 (2004)

    CAS  Google Scholar 

  30. P. Moghimian, A. Najafi, S. Afshar, J. Javadpour, Effect of low temperature on formation mechanism of calcium phosphate nano powder via precipitation method. Adv. Powder Technol. 23, 744–751 (2012)

    CAS  Google Scholar 

  31. E.G. Nordström, K.H. Karlsson, Carbonate-doped hydroxyapatite. J. Mater. Sci. Mater. Med. 1, 182–184 (1990)

    Google Scholar 

  32. S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23, 1073–1080 (2002)

    CAS  Google Scholar 

  33. H. Monma, T. Kamiya, Preparation of hydroxyapatite by the hydrolysis of brushite. J. Mater. Sci. 22, 4247–4250 (1987)

    CAS  Google Scholar 

  34. E.I. Dorozhkina, S.V. Dorozhkin, Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem. Mater. 14, 4267–4272 (2002)

    CAS  Google Scholar 

  35. K. Ishikawa, P. Ducheyne, S. Radin, Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray-diffraction analysis. J. Mater. Sci. Mater. Med. 4, 165–168 (1993)

    CAS  Google Scholar 

  36. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. LeGeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 14, 201–209 (2003)

    CAS  Google Scholar 

  37. S.R. Kim, B.M. Lee, Y.K. Park, Effect of pH on the synthesis of hydroxyapatite. J. Korean Ceram. Soc. 28, 885–891 (1991)

    Google Scholar 

  38. A. Yasukawa, K. Kandori, T. Ishikawa, TPD-TG-MS study of carbonate calcium hydroxyapatite particles. Calcif. Tissue Int. 72, 243–250 (2003)

    CAS  Google Scholar 

  39. L. Sha, Y.Y. Liu, Q. Zhang, M. Hu, Y.S. Jiang, Microwave-assisted co-precipitation synthesis of high purity beta-tricalcium phosphate crystalline powders. Mater. Chem. Phys. 129, 1138–1141 (2011)

    CAS  Google Scholar 

  40. S. Lazic, S. Zec, N. Miljevic, S. Milonjic, The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim. Acta 374, 13–22 (2001)

    CAS  Google Scholar 

  41. E.M. Levin, Phase diagrams for ceramists (American Ceramic Society, Columbus, 1956)

    Google Scholar 

  42. I. Cacciotti, A. Bianco, High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram. Int. 37, 127–137 (2011)

    CAS  Google Scholar 

  43. S. Bose, S. Tarafder, S.S. Banerjee, N.M. Davies, A. Bandyopadhyay, Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone 48, 1282–1290 (2011)

    CAS  Google Scholar 

  44. H.-S. Ryu, H.-J. Youn, K.S. Hong, B.-S. Chang, C.-K. Lee, S.-S. Chung, An improvement in sintering property of b-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23, 909–914 (2002)

    CAS  Google Scholar 

  45. G. Vereecke, J. Lemaître, Calculation of the solubility diagrams in the system Ca(OH)2–H3PO4–KOH–HNO3–CO2–H2O. J. Cryst. Growth 104, 820–832 (1990)

    CAS  Google Scholar 

  46. Y.N. Zhu, X.H. Zhang, Y.D. Chen, Q.L. Xie, J.K. Lan, M.F. Qian, N. He, A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25°C and 45°C. Chem. Geol. 268, 89–96 (2009)

    CAS  Google Scholar 

  47. L.M. Rodriguez-Lorenzo, M. Vallet-Regi, Controlled crystallization of calcium phosphate apatites. Chem. Mater. 12, 2460–2465 (2000)

    CAS  Google Scholar 

  48. S.G. Lee, H.Y. Ko, G.J. Lee, S.H. Choi, A study on the preparation and properties of hydroxyapatite bioceramics. J. Korean Ceram. Soc. 26, 157–166 (1989)

    Google Scholar 

  49. M. Uota, H. Arakawa, N. Kitamura, T. Yoshimura, J. Tanaka, T. Kijima, Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir 21, 4724–4728 (2005)

    CAS  Google Scholar 

  50. B. Szilagyi, N. Muntean, R. Barabas, O. Ponta, B.G. Lakatos, Reaction precipitation of amorphous calcium phosphate: population balance modelling and kinetics. Chem. Eng. Res. Des. 93, 278–286 (2015)

    CAS  Google Scholar 

  51. N.S. Al-Qasas, S. Rohani, Synthesis of pure hydroxyapatite and the effect of synthesis conditions on its yield, crystallinity, morphology and mean particle size. Sep. Sci. Technol. 40, 3187–3224 (2005)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2018R1D1A1B07050524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Joo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, IH., Lee, JA., Lee, JH. et al. Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. J. Korean Ceram. Soc. 57, 56–64 (2020). https://doi.org/10.1007/s43207-019-00004-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-019-00004-0

Keywords

Navigation