Hodson R. A gripping problem: designing machines that can grasp and manipulate objects with anything approaching human levels of dexterity is first on the to-do list for robotics. In: Nature; 2018.
Zeng A, Song S, Yu K-T, Donlon E, Hogan FR, Bauza M, et al. Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. PiscatawayJ: IEEE; 2018.
Kumra S, Kanan C. Robotic grasp detection using deep convolutional neural networks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); September 24–28, 2017; Vancouver: IEEE; 2017.
Reinhart G, Hüttner S, Krug S. Automatic configuration of robot systems – upward and downward integration. In: Jeschke S, Liu H, Schilberg D, editors. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011.
El-Shamouty M, Kleeberger K, Lämmle A, Huber M. Simulation-driven machine learning for robotics and automation. tm - Technisches Messen. 2019;86:673–84.
Article
Google Scholar
Bohg J, Morales A, Asfour T, Kragic D. Data-driven grasp synthesis—a survey. In: IEEE Transactions on Robotics (T-RO); 2014.
Sahbani A, El-Khoury S, Bidaud P. An overview of 3D object grasp synthesis algorithms. In: Robotics and Autonomous Systems; 2012.
Bicchi A, Kumar V. Robotic grasping and contact: a review. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); April 24–28, 2000; San Francisco, CA, USA; 2000.
Shimoga KB. Robot grasp synthesis algorithms: a survey. In: The International Journal of Robotics Research (IJRR); 1996.
Bormann R, Brito BF de, Lindermayr J, Omainska M, Patel M. Towards automated order picking robots for warehouses and retail. In: Tzovaras, Dimitrios and Giakoumis, Dimitrios and Vincze, Markus and Argyros, Antonis, editor. Computer Vision Systems; September 23–25, 2019; Thessaloniki, Greece. Cham: Springer International Publishing; 2019.
Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge Massachusetts: The MIT Press; 2018.
MATH
Google Scholar
Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, et al. Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp Metrics. In: Amato N, Srinivasa S, Ayanian N, Kuindersma S, editors. Robotics: Science and Systems (RSS); July 12–16, 2017; Cambridge, Massachusetts, USA: Robotics Science and Systems Foundation; 2017.
Mahler J, Matl M, Liu X, Li A, Gealy D, Goldberg K. Dex-Net 3.0: computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018.
Redmon J, Angelova A. Real-time grasp detection using convolutional neural networks. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 26–30, 2015; Seattle, WA, USA; 2015.
Morrison D, Leitner J, Corke P. Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach. In: Kress-Gazit H, Srinivasa S, Atanasov N, editors. Robotics: Science and Systems (RSS); June 26–30, 2018. Pittsburgh: Robotics Science and Systems Foundation; 2018.
Google Scholar
James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, Ibarz J, et al. Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: IEEE, editor. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June 16–20, 2019; Long Beach, CA; 2019.
Siciliano B, Khatib O, editors. Springer Handbook of Robotics. Berlin: Springer Science+Business Media; 2008.
MATH
Google Scholar
Tremblay J, To T, Sundaralingam B, Xiang Y, Fox D, Birchfield S. Deep object pose estimation for semantic robotic grasping of household objects. In: Conference on Robot Learning (CoRL); October 29–31, 2018. Zürich: PMLR; 2018.
Google Scholar
Dong Z, Liu S, Zhou T, Cheng H, Zeng L, Yu X, Liu H. PPR-Net: point-wise pose regression network for instance segmentation and 6D pose estimation in bin-picking scenarios. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); November 4–8, 2019; The Venetian Macao, Macau, China: IEEE; 2019.
• Kleeberger K, Huber MF. Single shot 6D object pose estimation. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 31 – June 4, 2020; Palais des Congrès de Paris, France; 2020. Provides state-of-the-art results for 6D object pose estimation in highly cluttered scenes.
Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. In: The International Journal of Robotics Research (IJRR); 2015.
Morrison D, Corke P, Leitner J. Learning robust, real-time, reactive robotic grasping. In: The International Journal of Robotics Research (IJRR); 2019.
Pinto L, Gupta A. Supersizing self-supervision: learning to grasp from 50K tries and 700 robot hours. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 16–21, 2016; Stockholm, Sweden; 2016.
Levine S, Pastor P, Krizhevsky A, Quillen D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. In: International Symposium on Experimental Robotics (ISER); 2016.
• Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. In: The International Journal of Robotics Research (IJRR); 2018. Highly influential work demonstrating the potential of deep learning for robotic grasping.
Mahler J, Pokorny FT, Hou B, Roderick M, Laskey M, Aubry M, et al. Dex-Net 1.0: a cloud-based network of 3D objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 16–21, 2016; Stockholm, Sweden; 2016.
Mahler J, Matl M, Satish V, Danielczuk M, DeRose B, McKinley S, Goldberg K. Learning ambidextrous robot grasping policies. SCIENCE ROBOTICS. 2019.
Satish V, Mahler J, Goldberg K. On-policy dataset synthesis for learning robot grasping policies using fully convolutional deep networks. In: IEEE Robotics and Automation Letters; 2019.
•• Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, et al. QT-Opt: scalable deep reinforcement learning for vision-based robotic manipulation. In: Conference on Robot Learning (CoRL); October 29–31, 2018; Zürich, Switzerland: PMLR; 2018. Setting a milestone in robotic grasping and manipulation.
Zeng A, Song S, Lee J, Rodriguez A, Funkhouser TA. TossingBot: learning to throw arbitrary objects with residual physics. In: Bicchi A, Kress-Gazit H, Hutchinson S, editors. Robotics: Science and Systems (RSS); June 22–26, 2019; Messe Freiburg, Germany; 2019.
Qin Y, Chen R, Zhu H, Song M, Xu J. S4G: amodal single-view single-shot SE(3) grasp detection in cluttered scenes. In: Conference on Robot Learning (CoRL); October 30 – November 1, 2019; Osaka, Japan; 2019.
• Mousavian A, Eppner C, Fox D. 6-DOF GraspNet: variational grasp generation for object manipulation. In: IEEE, editor. IEEE International Conference on Computer Vision (ICCV); October 27 – November 2, 2019; Seoul, Korea; 2019. Addresses model-free grasping in 6D.
•• Song S, Zeng A, Lee J, Funkhouser T. Grasping in the Wild:learning 6DoF closed-loop grasping from low-cost demonstrations. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 31 – June 4, 2020; Palais des Congrès de Paris, France; 2020. Addresses closed-loop model-free grasping in 6D and in cluttered scenes.
ten Pas A, Gualtieri M, Saenko K, Platt R. Grasp pose detection in point clouds. In: The International Journal of Robotics Research (IJRR); 2017.
Spenrath F, Pott A. Gripping point determination for bin picking using heuristic search. In: CIRP Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME); July 20–22, 2016; Ischia, Italy; 2016.
Brégier R, Devernay F, Leyrit L, Crowley JL. Symmetry aware evaluation of 3D object detection and pose estimation in scenes of many parts in bulk. In: IEEE, editor. IEEE International Conference on Computer Vision (ICCV); October 22–29, 2017; Venice, Italy; 2017.
Brégier R, Devernay F, Leyrit L, Crowley JL. Defining the pose of any 3D rigid object and an associated distance. In: International Journal of Computer Vision (IJCV); 2018.
Hodaň T, Matas J, Obdržálek Š. On evaluation of 6D object pose estimation. In: European Conference on Computer Vision (ECCV); 2016.
Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K, Navab N. Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Asian Conference on Computer Vision (ACCV); 2012.
Spenrath F, Pott A. Using neural networks for heuristic grasp planning in random bin picking. In: IEEE International Conference on Automation Science and Engineering (CASE); August 20–24, 2018; Munich, Germany; 2018.
Ledermann T. Partikel-Schwarm-Optimierung zur Objektlageerkennung in Tiefendaten [Dissertation]. Stuttgart: University of Stuttgart; 2012.
Google Scholar
Palzkill M. Heuristisches Suchverfahren zur Objektlageerkennung aus Punktewolken für industrielle Zuführsysteme [Dissertation]. Stuttgart: University of Stuttgart; 2014.
Google Scholar
Kleeberger K, Landgraf C, Huber MF. Large-scale 6D object pose estimation dataset for industrial bin-picking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); November 4–8, 2019. IEEE: The Venetian Macao, Macau, China; 2019.
Book
Google Scholar
Kehl W, Manhardt F, Tombari F, Ilic S, Navab N. SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. In: IEEE, editor. IEEE International Conference on Computer Vision (ICCV); October 22–29, 2017; Venice, Italy; 2017.
Sundermeyer M, Marton Z, Durner M, Triebel R. Implicit 3D orientation learning for 6D object detection from RGB images. In: European Conference on Computer Vision (ECCV); 2018.
Tekin B, Sinha SN, Fua P. Real-time seamless single shot 6D object pose prediction. In: IEEE, editor. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June 18–22, 2018; Salt Lake City, Utah; 2018.
Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem. In: International Journal of Computer Vision (IJCV); 2009.
•• Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P. Domain randomization for transferring deep neural networks from simulation to the real world. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); September 24–28, 2017; Vancouver, BC, Canada: IEEE; 2017. Highly influential work regarding sim-to-real transfer.
Kleeberger K, Huber MF. Object pose estimation challenge for bin-picking. 2019. https://www.bin-picking.ai/en/competition.html. Accessed 1 June 2020.
Hodaň T, Michel F, Sahin C, Kim T-K, Matas J, Rother C. SIXD Challenge 2017. 2017. http://cmp.felk.cvut.cz/sixd/challenge2017/. Accessed 1 June 2020.
Hodaň T, Michel F, Brachmann E, Kehl W, Glent Buch A, Kraft D, et al. BOP: benchmark for 6D object pose estimation. In: European Conference on Computer Vision (ECCV); 2018. Accessed 1 June 2020.
Qi CR, Yi L, Su H, Guibas LJ. PointNet++: deep hierarchical feature learning on point sets in a metric space. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, editors. Advances in Neural Information Processing Systems 30 (NIPS 2017); December 04–09, 2017. Long Beach, California; 2017.
Saxena A, Driemeyer J, Ng AY. Robotic grasping of novel objects using vision. In: The International Journal of Robotics Research (IJRR); 2008.
Rubinstein RY, Kroese DP. The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo Simulation and Machine Learning. Berlin: Springer-Verlag; 2004.
Book
Google Scholar
Jiang Y, Moseson S, Saxena A. Efficient grasping from RGBD images: learning using a new rectangle representation. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 9–13, 2011; Shanghai, China. Piscataway, NJ: IEEE; 2011.
Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: unified, real-time object detection. In: IEEE, editor. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June 26 – July 1, 2016; Las Vegas, Nevada; 2016.
Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: IEEE, editor. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); July 21–26, 2017; Honolulu, Hawaii; 2017. 7263–7271.
Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection. In: C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Q. Weinberger, editors. Advances in Neural Information Processing Systems 26 (NIPS 2013): Curran Associates, Inc; 2013.
Cornell University. Cornell Grasping Dataset. http://pr.cs.cornell.edu/grasping/rectdata/data.php. Accessed 1 June 2020.
Depierre A, Dellandréa E, Chen L. Jacquard: a large scale dataset for robotic grasp detection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); October 1–5, 2018; Madrid, Spain: IEEE; 2018.
Zeng A, Song S, Welker S, Lee J, Rodriguez A, Funkhouser TA. Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); October 1–5, 2018; Madrid, Spain: IEEE; 2018.
Berscheid L, Meißner P, Kroeger T. Robot learning of shifting objects for grasping in cluttered environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); November 4–8, 2019; The Venetian Macao, Macau, China: IEEE; 2019.
Quillen D, Jang E, Nachum O, Finn C, Ibarz J, Levine S. Deep reinforcement learning for vision-based robotic grasping: a simulated comparative evaluation of off-policy methods. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018.
• Bousmalis K, Irpan A, Wohlhart P, Bai Y, Kelcey M, Kalakrishnan M, et al. Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018. Highly influential work regarding sim-to-real transfer for robotic grasping.
Rohmer E, Singh SPN, Freese M. V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); November 3–7, 2013; Tokyo, Japan: IEEE; 2013.
James S, Freese M, Davison AJ. PyRep: bringing V-REP to deep robot learning; 26.06.2019.
Todorov E, Erez T, Tassa Y. MuJoCo: a physics engine for model-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); October 7–12, 2012; Vilamoura, Algarve, Portugal: IEEE; 2012.
Blender. https://www.blender.org/. Accessed 1 June 2020.
Koenig N, Howard A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 28 September – 2 October, 2004; Sendai, Japan: IEEE; 2004. p. 2149–2154. https://doi.org/10.1109/IROS.2004.1389727. Accessed 1 June 2020.
Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D. Unsupervised pixel-level domain adaptation with generative adversarial networks. In: IEEE, editor. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); July 21–26, 2017; Honolulu, Hawaii; 2017.
Peng XB, Andrychowicz M, Zaremba W, Abbeel P. Sim-to-real transfer of robotic control with dynamics randomization. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018.
Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W, Webb R. Learning from simulated and unsupervised images through adversarial training. In: IEEE, editor. IEEE International Conference on Computer Vision (ICCV); October 22–29, 2017; Venice, Italy; 2017.
Fang K, Bai Y, Hinterstoisser S, Savarese S, Kalakrishnan M. Multi-task domain adaptation for deep learning of instance grasping from simulation. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018.
Danielczuk M, Matl M, Gupta S, Li A, Lee A, Mahler J, Goldberg K. Segmenting unknown 3D objects from real depth images using Mask R-CNN trained on synthetic data. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 20–24, 2019; Montreal, Canada; 2019.
James S, Davison AJ, Johns E. Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task. In: Conference on Robot Learning (CoRL); November 13–15, 2017; Mountain View, California: PMLR; 2017.
Chebotar Y, Handa A, Makoviychuk V, Macklin M, Issac J, Ratliff N, Fox D. Closing the sim-to-real loop: adapting simulation randomization with real world experience. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 20–24, 2019; Montreal, Canada; 2019.
OpenAI, Andrychowicz M, Baker B, Chociej M, Jozefowicz R, Mc Grew B, et al. Learning dexterous in-hand manipulation; 01.08.2018.
OpenAI, Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, et al. Solving Rubik’s Cube with a robot hand; 16.10.2019.
Tobin J, Biewald L, Duan R, Andrychowicz M, Handa A, Kumar V, et al. Domain randomization and generative models for robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); October 1–5, 2018; Madrid, Spain: IEEE; 2018.
Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, et al. Domain-adversarial training of neural networks. In: Journal of Machine Learning Research 17; 2016.
Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D. Domain separation networks. In: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett, editors. Advances in Neural Information Processing Systems 29 (NIPS 2016): Curran Associates, Inc; 2016.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger, editors. Advances in Neural Information Processing Systems 27 (NIPS 2014); December 08–13, 2014. Palais des Congrès de Montréal, Montréal Canada: Curran Associates, Inc; 2014.
Visual Learning Lab Heidelberg. Occluded Object Challenge. 2015. https://hci.iwr.uni-heidelberg.de/vislearn/iccv2015-occlusion-challenge/. Accessed 1 June 2020.
Sun Y, Falco J, editors. Robotic grasping and manipulation: first robotic grasping and manipulation challenge, RGMC 2016, Held in Conjunction with IROS 2016, Daejeon, South Korea, October 10–12, 2016, Revised Papers. Cham: Springer; 2018.
Sun Y, Calli B, Falco J, Leitner J, Roa M, Xiong R, Yokokohji Y. Robotic grasping and manipulation competition. 2019. https://rpal.cse.usf.edu/competitioniros2019/. Accessed 1 June 2020.
Eppner C, Höfer S, Jonschkowski R, Martín-Martín R, Sieverling A, Wall V, Brock O. Lessons from the Amazon Picking Challenge: four aspects of building robotic systems. In: Hsu D, Amato N, Berman S, Jacobs S, editors. Robotics: Science and Systems (RSS); June 18–22, 2016; Ann Arbor, Michigan, USA; 2016.
Zeng A, Yu K-T, Song S, Suo D, Walker E, JR., Rodriguez A, Xiao J. Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 29 – June 3, 2017; Singapore, Singapore: IEEE; 2017.
Morrison D, Tow AW, McTaggart M, Smith R, Kelly-Boxall N, Wade-McCue S, et al. Cartman: the low-cost cartesian manipulator that won the Amazon Robotics Challenge. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018.
Hernandez C, Bharatheesha M, Ko W, Gaiser H, Tan J, van Deurzen K, et al. Team Delft’s robot winner of the Amazon Picking Challenge 2016; 18.10.2016.
Jonschkowski R, Eppner C, Hofer S, Martin-Martin R, Brock O. Probabilistic multi-class segmentation for the Amazon Picking Challenge. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); October 9–14, 2016; Daejeon, South Korea: IEEE; 2016.
Correll N, Bekris KE, Berenson D, Brock O, Causo A, Hauser K, et al. Analysis and observations from the first Amazon Picking Challenge. In: IEEE Transactions on Automation Science and Engineering. p. 172–188.
Leitner J, Tow AW, Dean JE, Suenderhauf N, Durham JW, Cooper M, et al. The ACRV Picking Benchmark (APB): a robotic shelf picking benchmark to foster reproducible research. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 29 – June 3, 2017; Singapore, Singapore: IEEE; 2017.
Ulbrich S, Kappler D, Asfour T, Vahrenkamp N, Bierbaum A, Przybylski M, Dillmann R. The OpenGRASP benchmarking suite: an environment for the comparative analysis of grasping and dexterous manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); September 25–30, 2011; San Francisco, CA, USA: IEEE; 2011.
Yan X, Hsu J, Khansari M, Bai Y, Pathak A, Gupta A, et al. Learning 6-DOF grasping interaction via deep geometry-aware 3D representations. In: IEEE, editor. IEEE International Conference on Robotics and Automation (ICRA); May 21–25, 2018; Brisbane, QLD, Australia. Piscataway, NJ: IEEE; 2018.
Zhou Y, Hauser K. 6DOF grasp planning by optimizing a deep learning scoring function. In: Amato N, Srinivasa S, Ayanian N, Kuindersma S, editors. Robotics: Science and Systems (RSS); July 12–16, 2017. Cambridge: Robotics Science and Systems Foundation; 2017.
Google Scholar
Riedlinger MA, Völk M, Kleeberger K, Khalid MU, Bormann R. Model-free grasp learning framework based on physical simulation. In: International Symposium on Robotics (ISR). Munich, Germany; 2020.
Gualtieri M, Platt R. Learning 6-DoF grasping and pick-place using attention focus. In: Conference on Robot Learning (CoRL); October 29–31, 2018; Zürich, Switzerland: PMLR; 2018.
Jang E, Vijayanarasimhan S, Pastor P, Ibarz J, Levine S. End-to-end learning of semantic grasping. In: Conference on Robot Learning (CoRL); November 13–15, 2017; Mountain View, California: PMLR; 2017.
Matsumura R, Domae Y, Wan W, Harada K. Learning based robotic bin-picking for potentially tangled objects. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); November 4–8, 2019; The Venetian Macao, Macau, China: IEEE; 2019.
Moosmann M, Spenrath F, Kleeberger K, Khalid MU, Mönnig M, Rosport J, Bormann R. Increasing the robustness of random bin picking by avoiding grasps of entangled workpieces. In: CIRP Conference on Manufacturing Systems (CIRP CMS); July 1–3, 2020; Chicago, IL, US; 2020.