Skip to main content

Advertisement

Log in

Investigation the phase equilibrium behavior in ternary system (CO2, DMSO, Capecitabine as anticancer drug) for precipitation of CPT Nanoparticle via the gas antisolvent supercritical process (GAS)

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the current study, for finding the optimum GAS process conditions, the liquid-phase volume expansion and process conditions were evaluated for the binary [carbon dioxide (CO2)-dimethyl sulfoxide (DMSO)] and ternary [CO2-DMSO-Capecitabine (CPT)] systems, respectively. To this end, CO2, DMSO, and CPT were considered as the anti-solvent gas, organic solvent, and solute, respectively. The minimum GAS operational pressure (Pmin) for precipitation of CPT nanoparticles in the (CO2-DMSO-CPT) system was calculated by Peng-Robinson (PR-EoS) and Soave-Redlich Kowang (SRK-EoS) with conventional quadratic mixing rules (vdW2). The obtained Pmin values according to PR-EoS and SRK-EoS at 308, 318, 328 and 338 K were 7.80, 8.57, 9.78 and 10.46 MPa, and 7.27, 7.61, 7.95 and 8.13 MPa, respectively. Also, the mole fraction of CO2, DMSO and CPT in the liquid phase was determined at mentioned temperatures, using PR-EoS. For validation of these models, the Pmin values for the [CO2-DMSO-Ampicillin (AMP)] system was calculated at 308, 318, 328 and 338 K by both of models (PR-EoS and SRK-EoS) and compared with obtained results by Ghoreishi et al. for this ternary system. The computed Pmin values for precipitation of AMP nanoparticles in the (CO2-DMSO-AMP) system in this work were well in agreement with reported values in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PR :

Peng-Robinson EoS

SRK :

Soave-Redlich Kowang EoS

α(T) :

Energy parameter of Peng Robinson EoS (Nm4 mol−2)

b :

Volume parameter of Peng Robinson EoS (m3 mol1)

y i :

Mole fraction of component i in vapor phase

x i :

Mole fraction of component i in liquid phase

k ij :

Binary interaction parameters in the mixing rules

l ij :

Binary interaction parameters in the mixing rules

P :

Pressure (Pa)

T :

Temperature (K)

R :

Gas constant (Jmol−1 K−1)

ν :

Molar volume of the phase (m3 mol−1)

α(T r , ω) :

Temperature-dependent function for the considered parameter of Peng Robinson and SRK EoS

φ :

Fugacity coefficient

ω :

Acentric factor

Δ:

Property change

1 :

Antisolvent

2 :

Solvent

3 :

Solute

0 :

Reference pressure

c :

Critical property

i :

Species i

l :

Liquid

v :

Vapor

s :

Solid

tp :

Triple point

References

  • Amidon GL et al (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  CAS  PubMed  Google Scholar 

  • Ardestani NS, Amani M (2021) Production of anthraquinone violet 3RN nanoparticles via the GAS process: optimization of the process parameters using Box-Behnken design. Dyes Pigments 193:109471

    Article  CAS  Google Scholar 

  • Ardestani NS, Majd NY, Amani M (2020) Experimental measurement and thermodynamic modeling of capecitabine (an Anticancer Drug) solubility in supercritical carbon dioxide in a ternary system: effect of different cosolvents. J Chem Eng Data 65(10):4762–4779

    Article  CAS  Google Scholar 

  • De Gioannis B, Gonzalez AV, Subra P (2004) Anti-solvent and co-solvent effect of CO2 on the solubility of griseofulvin in acetone and ethanol solutions. J Supercrit Fluids 29(1–2):49–57

    Article  CAS  Google Scholar 

  • de la Fuente Badilla JC, Peters CJ, de Swaan Arons J (2000) Volume expansion in relation to the gas–antisolvent process. J Supercrit Fluids 17(1):13–23

    Article  Google Scholar 

  • Duggan JN, Bozack MJ, Roberts CB (2013) The synthesis and arrested oxidation of amorphous cobalt nanoparticles using DMSO as a functional solvent. J Nanopart Res 15(11):2089

    Article  CAS  Google Scholar 

  • Esfandiari N (2015) Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. J Supercrit Fluids 100:129–141

    Article  CAS  Google Scholar 

  • Esfandiari N, Ghoreishi SM (2013) Synthesis of 5-Fluorouracil nanoparticles via supercritical gas antisolvent process. J Supercrit Fluids 84:205–210

    Article  CAS  Google Scholar 

  • Esfandiari N, Ghoreishi SM (2015a) Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process. AAPS PharmSciTech 16(6):1263–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esfandiari N, Ghoreishi SM (2015b) Optimal thermodynamic conditions for ternary system (CO2, DMSO, ampicillin) in supercritical CO2 antisolvent process. J Taiwan Inst Chem Eng 50:31–36

    Article  CAS  Google Scholar 

  • Fusaro F, Mazzotti M, Muhrer G (2004) Gas antisolvent recrystallization of paracetamol from acetone using compressed carbon dioxide as antisolvent. Cryst Growth Des 4(5):881–889

    Article  CAS  Google Scholar 

  • Gallagher PM, et al (1989) Gas antisolvent recrystallization: new process to recrystallize compounds insoluble in supercritical fluids 406:334–354

  • Georgioudakis M, Plevris V (2020) A Comparative study of differential evolution variants in constrained structural optimization. Front Built Environ 6:102

    Article  Google Scholar 

  • Ghoreishi SM, Komeili S (2009) Modeling of fluorinated tetraphenylporphyrin nanoparticles size design via rapid expansion of supercritical solution. J Supercrit Fluids 50(2):183–192

    Article  CAS  Google Scholar 

  • Green DWRHPS (2008) Chemical engineers’ handbook, 8th edn. McGrow-Hill, New York

    Google Scholar 

  • Immirzi A, Perini B (1977) Prediction of density in organic crystals. Acta Crystallogr Sect A Cryst Phys Diffr Theoret Gener Crystallogr 33(1):216–218

    Article  Google Scholar 

  • Jaberipour M, Khorram E, Karimi B (2011) Particle swarm algorithm for solving systems of nonlinear equations. Comput Math Appl 62(2):566–576

    Article  Google Scholar 

  • Jafari D et al (2015) Gas-antisolvent (GAS) crystallization of aspirin using supercritical carbon dioxide: experimental study and characterization. Ind Eng Chem Res 54(14):3685–3696

    Article  CAS  Google Scholar 

  • Jin H et al (2012) Preparation of thalidomide nano-flakes by supercritical antisolvent with enhanced mass transfer. Particuology 10(1):17–23

    Article  CAS  Google Scholar 

  • Juan C, Shariati A, Peters CJ (2004) On the selection of optimum thermodynamic conditions for the GAS process. J Supercrit Fluids 32(1–3):55–61

    Google Scholar 

  • Kalantarian P et al (2010) Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery. Int J Nanomed 5:763–770

    Article  CAS  Google Scholar 

  • Kikic I et al (2010) Solubility estimation of drugs in ternary systems of interest for the antisolvent precipitation processes. J Supercrit Fluids 55(2):616–622

    Article  CAS  Google Scholar 

  • Marrero J, Gani R (2001) Group-contribution based estimation of pure component properties. Fluid Phase Equilib 183:183–208

    Article  Google Scholar 

  • Martín A, Cocero MJ (2008) Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Deliv Rev 60(3):339–350

    Article  PubMed  CAS  Google Scholar 

  • Moneghini M et al (2001) Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int J Pharm 222(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Montes A et al (2016) Mangiferin nanoparticles precipitation by supercritical antisolvent process. J Supercrit Fluids 112:44–50

    Article  CAS  Google Scholar 

  • Mukhopadhyay M (2003) Partial molar volume reduction of solvent for solute crystallization using carbon dioxide as antisolvent. J Supercrit Fluids 25(3):213–223

    Article  CAS  Google Scholar 

  • Pahlavanzadeh H, Bakhshi H, Shirazizadeh HA (2016) Experimental measurement and phase equilibria calculation for ternary systems of carbon dioxide+ toluene+naphthalene and carbon dioxide+ ethanol+acridine, applicable for fine particle production in GAS process. Thermochim Acta 638:69–79

    Article  CAS  Google Scholar 

  • Park SJ, Yeo SD (2007) Antisolvent crystallization of sulfa drugs and the effect of process parameters. Sep Sci Technol 42(12):2645–2660

    Article  CAS  Google Scholar 

  • Park S-J, Yeo S-D (2008) Recrystallization of caffeine using gas antisolvent process. J Supercrit Fluids 47(1):85–92

    Article  CAS  Google Scholar 

  • Pathak P et al (2004) Nanosizing drug particles in supercritical fluid processing. J Am Chem Soc 126(35):10842–10843

    Article  CAS  PubMed  Google Scholar 

  • Pessoa AS et al (2019) Precipitation of resveratrol-isoniazid and resveratrol-nicotinamide cocrystals by gas antisolvent. J Supercrit Fluids 145:93–102

    Article  CAS  Google Scholar 

  • Phothipanyakun S, Suttikornchai S, Charoenchaitrakool M (2013) Dissolution rate enhancement of sulfamethoxazole using the gas anti-solvent (GAS) process. Powder Technol 250:84–90

    Article  CAS  Google Scholar 

  • Poling BE, Prausnitz JM, O’connell JP (2001) The properties of gases and liquids, vol 5. McGraw-Hill, New York

    Google Scholar 

  • Prosapio V, De Marco I, Reverchon E (2018) Supercritical antisolvent coprecipitation mechanisms. J Supercrit Fluids 138:247–258

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I, Torino E (2007) Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J Supercrit Fluids 43(1):126–138

    Article  CAS  Google Scholar 

  • Saha I et al (2014) Multiobjective differential evolution: a comparative study on benchmark problems. Springer International Publishing, Cham

    Google Scholar 

  • Saif MW et al (2004) Peripheral neuropathy associated with capecitabine. Anticancer Drugs 15(8):767–771

    Article  CAS  PubMed  Google Scholar 

  • Sajeesh S, Sharma CP (2006) Interpolymer complex microparticles based on polymethacrylic acid-chitosan for oral insulin delivery. J Appl Polym Sci 99(2):506–512

    Article  CAS  Google Scholar 

  • Sala S et al (2004) Molecular insight, through IR spectroscopy, on solvating phenomena occurring in CO2-expanded solutions. ChemPhysChem 5(2):243–245

    Article  CAS  PubMed  Google Scholar 

  • Schmoll HJ (2003) Dihydropyrimidine dehydrogenase inhibition as a strategy for the oral administration of 5-fluorouracil: utility in the treatment of advanced colorectal cancer. Anticancer Drugs 14(9):695–702

    Article  CAS  PubMed  Google Scholar 

  • Shabani A et al (2019) A new optimization algorithm based on search and rescue operations. Math Probl Eng, 2019(2482543):23

  • Shariati A, Peters CJ (2002) Measurements and modeling of the phase behavior of ternary systems of interest for the GAS process: i. The system carbon dioxide+1-propanol+salicylic acid. J Supercrit Fluids 23(3):195–208

    Article  CAS  Google Scholar 

  • Stein SE, Brown RL (1994) Estimation of normal boiling points from group contributions. J Chem Inf Comput Sci 34(3):581–587

    Article  CAS  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  Google Scholar 

  • Su C-S, Tang M, Chen Y-P (2009) Recrystallization of pharmaceuticals using the batch supercritical anti-solvent process. Chem Eng Process 48(1):92–100

    Article  CAS  Google Scholar 

  • Vega Gonzalez A, Tufeu R, Subra P (2002) High-pressure vapor−liquid equilibrium for the binary systems carbon dioxide + dimethyl sulfoxide and carbon dioxide + dichloromethane. J Chem Eng Data 47(3):492–495

    Article  CAS  Google Scholar 

  • Wang W et al (2013) Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent. J Supercrit Fluids 74:137–144

    Article  CAS  Google Scholar 

  • Wu H-T, Lee M-J, Lin H-M (2005) Nano-particles formation for pigment red 177 via a continuous supercritical anti-solvent process. J Supercrit Fluids 33:173–182

    Article  CAS  Google Scholar 

  • Yamini Y et al (2012) Solubility of capecitabine and docetaxel in supercritical carbon dioxide: Data and the best correlation. Thermochim Acta 549:95–101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Islamic Azad University, Robat Karim Branch and Materials and Energy Research Center, for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedasadat Saadati Ardestani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, M., Saadati Ardestani, N. Investigation the phase equilibrium behavior in ternary system (CO2, DMSO, Capecitabine as anticancer drug) for precipitation of CPT Nanoparticle via the gas antisolvent supercritical process (GAS). Braz. J. Chem. Eng. 39, 857–868 (2022). https://doi.org/10.1007/s43153-021-00185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00185-4

Keywords

Navigation