Skip to main content

Advertisement

Log in

Could Cytoplasmic Lipid Droplets be Linked to Inefficient Oxidative Phosphorylation in Cancer?

  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Triglyceride-rich cytoplasmic lipid droplets are present in many malignant cancers. It remains controversial as to whether the lipid droplets serve as reservoirs of respiratory fuel or are sequestered in droplets because they cannot be efficiently oxidized for energy. Cytoplasmic lipid droplets can arise from either hypoxia or from abnormalities in mitochondria structure and function. A hypothesis is presented suggesting that the lipid droplet accumulation is linked to inefficient oxidative phosphorylation.

Recent Findings

Evidence is reviewed showing that hypoxia-induced inhibition of oxidative phosphorylation can elicit the formation of cytoplasmic lipid droplets. Abnormalities in mitochondrial structure and function have been documented in malignant cancers where lipid droplets are also present.

Summary

The mitochondrial abnormalities seen in cancer cells would compromise the efficiency of oxidative phosphorylation and thus contribute to the accumulation of lipid droplets in the cytoplasm. The presence of cytoplasmic lipid droplets and the aerobic fermentation commonly seen in most malignant cancers can serve together as biomarkers for oxidative phosphorylation inefficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bozza PT, Viola JP. Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4–6):243–50. https://doi.org/10.1016/j.plefa.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  2. Cotte AK, Aires V, Fredon M, Limagne E, Derangere V, Thibaudin M, et al. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun. 2018;9(1):322. https://doi.org/10.1038/s41467-017-02732-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koizume S, Miyagi Y. Lipid Droplets: A Key Cellular Organelle Associated with Cancer Cell Survival under Normoxia and Hypoxia. Int J Mol Sci. 2016;17(9). https://doi.org/10.3390/ijms17091430.

  4. Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–93. https://doi.org/10.1016/j.addr.2020.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A, Seco J, et al. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells Int. 2017;2017:1656053. https://doi.org/10.1155/2017/1656053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020;11(2):105. https://doi.org/10.1038/s41419-020-2297-3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petan T, Jarc E, Jusovic M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules. 2018; 23(8). https://doi.org/10.3390/molecules23081941.

  8. Cui L, Liu P. Two Types of Contact Between Lipid Droplets and Mitochondria. Front Cell Dev Biol. 2020;8:618322. https://doi.org/10.3389/fcell.2020.618322.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Friedman JR. Mitochondria from the Outside in: The Relationship Between Inter-Organelle Crosstalk and Mitochondrial Internal Organization. Contact (Thousand Oaks). 2022;5. https://doi.org/10.1177/25152564221133267.

  10. Geng F, Cheng X, Wu X, Yoo JY, Cheng C, Guo JY, et al. Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis. Clin Cancer Res. 2016;22(21):5337–48. https://doi.org/10.1158/1078-0432.CCR-15-2973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rak S, De Zan T, Stefulj J, Kosovic M, Gamulin O, Osmak M. FTIR spectroscopy reveals lipid droplets in drug resistant laryngeal carcinoma cells through detection of increased ester vibrational bands intensity. Analyst. 2014;139(13):3407–15. https://doi.org/10.1039/c4an00412d.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou X, Wei J, Chen F, Xiao X, Huang T, He Q, et al. Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2015;6(38):41077–91. https://doi.org/10.18632/oncotarget.6218.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abramczyk H, Surmacki J, Kopec M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst. 2015;140(7):2224–35. https://doi.org/10.1039/c4an01875c.

    Article  CAS  PubMed  Google Scholar 

  14. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22. https://doi.org/10.1038/s41416-019-0650-z.

    Article  CAS  PubMed  Google Scholar 

  15. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5(1):e189. https://doi.org/10.1038/oncsis.2015.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6(6):1353–63. https://doi.org/10.1242/dmm.011338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol. 2023: 1–17. https://doi.org/10.1038/s41574-023-00845-0.

  18. Schonfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab. 2013;33(10):1493–9. https://doi.org/10.1038/jcbfm.2013.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ta NL, Seyfried TN. Influence of Serum and Hypoxia on Incorporation of [(14)C]-D-Glucose or [(14)C]-L-Glutamine into Lipids and Lactate in Murine Glioblastoma Cells. Lipids. 2015;50(12):1167–84. https://doi.org/10.1007/s11745-015-4075-z.

    Article  CAS  PubMed  Google Scholar 

  20. Lee SJ, Zhang J, Choi AM, Kim HP. Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid Med Cell Longev. 2013;2013:327167. https://doi.org/10.1155/2013/327167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003;100(6):3077–82. https://doi.org/10.1073/pnas.0630588100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jarc E, Eichmann TO, Zimmermann R, Petan T. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress. Data Brief. 2018;18:234–40. https://doi.org/10.1016/j.dib.2018.03.033.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gordon GB, Barcza MA, Bush ME. Lipid accumulation of hypoxic tissue culture cells. Am J Pathol. 1977;88(3):663–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hapala I, Marza E, Ferreira T. Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell. 2011;103(6):271–85. https://doi.org/10.1042/BC20100144.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159–68. https://doi.org/10.1194/jlr.M017939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Penzo D, Tagliapietra C, Colonna R, Petronilli V, Bernardi P. Effects of fatty acids on mitochondria: implications for cell death. Biochem Biophys Acta. 2002;1555(1–3):160–5. https://doi.org/10.1016/s0005-2728(02)00272-4.

    Article  CAS  PubMed  Google Scholar 

  27. Tirinato L, Marafioti MG, Pagliari F, Jansen J, Aversa I, Hanley R, et al. Lipid droplets and ferritin heavy chain: a devilish liaison in human cancer cell radioresistance. Elife. 2021; 10. https://doi.org/10.7554/eLife.72943.

  28. Moriyama N, Yokoyama M, Niijima T. A morphometric study on the ultrastructure of well-differentiated tumours and inflammatory mucosa of the human urinary bladder. Virchows Arch A Pathol Anat Histopathol. 1984;405(1):25–39. https://doi.org/10.1007/BF00694923.

    Article  CAS  PubMed  Google Scholar 

  29. Papadimitriou JC, Drachenberg CB. Giant mitochondria with paracrystalline inclusions in paraganglioma of the urinary bladder: correlation with mitochondrial abnormalities in paragangliomas of other sites. Ultrastruct Pathol. 1994;18(6):559–64. https://doi.org/10.3109/01913129409021899.

    Article  CAS  PubMed  Google Scholar 

  30. Rouiller C. Physiological and pathological changes in mitochondrial morphology. Int Rev Cytol. 1960;9:227–92. https://doi.org/10.1016/s0074-7696(08)62748-5.

    Article  CAS  PubMed  Google Scholar 

  31. Zembroski AS, Andolino C, Buhman KK, Teegarden D. Proteomic Characterization of Cytoplasmic Lipid Droplets in Human Metastatic Breast Cancer Cells. Front Oncol. 2021;11:576326. https://doi.org/10.3389/fonc.2021.576326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borrego SL, Fahrmann J, Hou J, Lin DW, Tromberg BJ, Fiehn O, et al. Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res. 2021;62:100056. https://doi.org/10.1016/j.jlr.2021.100056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giudetti AM, De Domenico S, Ragusa A, Lunetti P, Gaballo A, Franck J, et al. A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(3):344–57. https://doi.org/10.1016/j.bbalip.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  34. Hershey BJ, Vazzana R, Joppi DL, Havas KM. Lipid Droplets Define a Sub-Population of Breast Cancer Stem Cells. J Clin Med. 2019;9(1). https://doi.org/10.3390/jcm9010087.

  35. Li Z, Liu H, Luo X. Lipid droplet and its implication in cancer progression. Am J Cancer Res. 2020;10(12):4112–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramos CV, Taylor HB. Lipid-rich carcinoma of the breast. A clinicopathologic analysis of 13 examples. Cancer. 1974;33(3):812–9. https://doi.org/10.1002/1097-0142(197403)33:3%3c812::aid-cncr2820330328%3e3.0.co;2-4.

    Article  CAS  PubMed  Google Scholar 

  37. Guan B, Wang H, Cao S, Rao Q, Wang Y, Zhu Y, et al. Lipid-rich carcinoma of the breast clinicopathologic analysis of 17 cases. Ann Diagn Pathol. 2011;15(4):225–32. https://doi.org/10.1016/j.anndiagpath.2010.10.006.

    Article  PubMed  Google Scholar 

  38. Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68(6):1732–40. https://doi.org/10.1158/0008-5472.CAN-07-1999.

    Article  CAS  PubMed  Google Scholar 

  39. Imazeki H, Ogiwara Y, Kawamura M, Boku N, Kudo-Saito C. CD11b(+)CTLA4(+) myeloid cells are a key driver of tumor evasion in colorectal cancer. J Immunother Cancer. 2021;9(7). https://doi.org/10.1136/jitc-2021-002841.

  40. Steuwe C, Patel II, Ul-Hasan M, Schreiner A, Boren J, Brindle KM, et al. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells. J Biophotonics. 2014;7(11–12):906–13. https://doi.org/10.1002/jbio.201300110.

    Article  CAS  PubMed  Google Scholar 

  41. Liu M, Fang X, Wang H, Ji R, Guo Q, Chen Z, et al. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front Oncol. 2022;12:1038932. https://doi.org/10.3389/fonc.2022.1038932.

    Article  CAS  PubMed  Google Scholar 

  42. Straub BK, Herpel E, Singer S, Zimbelmann R, Breuhahn K, Macher-Goeppinger S, et al. Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Mod Pathol. 2010;23(3):480–92. https://doi.org/10.1038/modpathol.2009.191.

    Article  CAS  PubMed  Google Scholar 

  43. Bhatia B, Hsieh M, Kenney AM, Nahle Z. Mitogenic Sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and medulloblastoma. Oncogene. 2011;30(4):410–22. https://doi.org/10.1038/onc.2010.454.

    Article  CAS  PubMed  Google Scholar 

  44. Taib B, Aboussalah AM, Moniruzzaman M, Chen S, Haughey NJ, Kim SF, et al. Lipid accumulation and oxidation in glioblastoma multiforme. Sci Rep. 2019;9(1):19593. https://doi.org/10.1038/s41598-019-55985-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirose T, Giannini C, Scheithauer BW. Ultrastructural features of pleomorphic xanthoastrocytoma: a comparative study with glioblastoma multiforme. Ultrastruct Pathol. 2001;25(6):469–78. https://doi.org/10.1080/019131201753343502.

    Article  CAS  PubMed  Google Scholar 

  46. Hoang-Minh LB, Siebzehnrubl FA, Yang C, Suzuki-Hatano S, Dajac K, Loche T, et al. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. EMBO J. 2018;37(23). https://doi.org/10.15252/embj.201798772.

  47. Arismendi-Morillo GJ, Castellano-Ramirez AV. Ultrastructural mitochondrial pathology in human astrocytic tumors: potentials implications pro-therapeutics strategies. J Electron Microsc. 2008;57(1):33–9. https://doi.org/10.1093/jmicro/dfm038.

    Article  Google Scholar 

  48. Sipe JC, Herman MM, Rubinstein LJ. Electron microscopic observations on human glioblastomas and astrocytomas maintained in organ culture systems. Am J Pathol. 1973;73(3):589–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Scheithauer BW, Bruner JM. The ultrastructural spectrum of astrocytic neoplasms. Ultrastruct Pathol. 1987;11(5–6):535–81.

    Article  CAS  PubMed  Google Scholar 

  50. Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel). 2023;15(7). https://doi.org/10.3390/cancers15072183.

  51. Offer S, Menard JA, Perez JE, de Oliveira KG, Indira Chandran V, Johansson MC, et al. Extracellular lipid loading augments hypoxic paracrine signaling and promotes glioma angiogenesis and macrophage infiltration. J Exp Clin Cancer Res. 2019;38(1):241. https://doi.org/10.1186/s13046-019-1228-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines. 2022;10(8). https://doi.org/10.3390/biomedicines10081943.

  53. Maraqah HH, Abu-Asab MS, Lee HS, Aboud O. Comparative survey of mitochondrial ultrastructure in IDH1-mutant astrocytoma and IDH1-wildtype glioblastoma (GBM). Ultrastruct Pathol. 2023:1–6. https://doi.org/10.1080/01913123.2023.2175942.

  54. Arismendi-Morillo G. Electron microscopy morphology of the mitochondrial network in gliomas and their vascular microenvironment. Biochim Biophys Acta. 2011;1807(6):602–8.

    Article  CAS  PubMed  Google Scholar 

  55. Thoenes W, Storkel S, Rumpelt HJ. Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol Res Pract. 1986;181(2):125–43. https://doi.org/10.1016/S0344-0338(86)80001-2.

    Article  CAS  PubMed  Google Scholar 

  56. Dutta P, Haller E, Sharp A, Nanjundan M. MIR494 reduces renal cancer cell survival coinciding with increased lipid droplets and mitochondrial changes. BMC Cancer. 2016;16:33. https://doi.org/10.1186/s12885-016-2053-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wettersten HI, Hakimi AA, Morin D, Bianchi C, Johnstone ME, Donohoe DR, et al. Grade-Dependent Metabolic Reprogramming in Kidney Cancer Revealed by Combined Proteomics and Metabolomics Analysis. Can Res. 2015;75(12):2541–52. https://doi.org/10.1158/0008-5472.CAN-14-1703.

    Article  CAS  Google Scholar 

  58. Lloreta-Trull J, Serrano S. Biology and pathology of the mitochondrion. Ultrastruct Pathol. 1998;22(5):357–67. https://doi.org/10.3109/01913129809103357.

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 2022;56:102452. https://doi.org/10.1016/j.redox.2022.102452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bosc C, Broin N, Fanjul M, Saland E, Farge T, Courdy C, et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat Commun. 2020;11(1):4056. https://doi.org/10.1038/s41467-020-17882-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen Q, Yuan Y, Chen T. Morphology, differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients. Mol Med Rep. 2014;9(1):293–8. https://doi.org/10.3892/mmr.2013.1789.

    Article  CAS  PubMed  Google Scholar 

  62. Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 and B-Cell Growth Transformation Induce Lipogenesis through Fatty Acid Synthase. J Virol. 2021;95(4). https://doi.org/10.1128/JVI.01857-20.

  63. Liang X, Fu W, Peng Y, Duan J, Zhang T, Fan D, et al. Lycorine induces apoptosis of acute myeloid leukemia cells and inhibits triglyceride production via binding and targeting FABP5. Ann Hematol. 2023;102(5):1073–86. https://doi.org/10.1007/s00277-023-05169-7.

    Article  CAS  PubMed  Google Scholar 

  64. Thurgood LA, Best OG, Rowland A, Lower KM, Brooks DA, Kuss BJ. Lipid uptake in chronic lymphocytic leukemia. Exp Hematol. 2022;106:58–67. https://doi.org/10.1016/j.exphem.2021.12.193.

    Article  CAS  PubMed  Google Scholar 

  65. Tucci J, Chen T, Margulis K, Orgel E, Paszkiewicz RL, Cohen MD, et al. Adipocytes Provide Fatty Acids to Acute Lymphoblastic Leukemia Cells. Front Oncol. 2021;11:665763. https://doi.org/10.3389/fonc.2021.665763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Z, Gu D, Wang R, Zuo X, Zhu H, Wang L, et al. CircRIC8B regulates the lipid metabolism of chronic lymphocytic leukemia through miR199b-5p/LPL axis. Exp Hematol Oncol. 2022;11(1):51. https://doi.org/10.1186/s40164-022-00302-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peiper SC, Kahn LB, Ross DW, Reddick RL. Ultrastructural organization of the Reed-Sternberg cell: its resemblance to cells of the monocyte-macrophage system. Blood Cells. 1980;6(3):515–23.

    CAS  PubMed  Google Scholar 

  68. Yano H, Fujiwara Y, Horlad H, Pan C, Kai K, Niino D, et al. Blocking cholesterol efflux mechanism is a potential target for antilymphoma therapy. Cancer Sci. 2022;113(6):2129–43. https://doi.org/10.1111/cas.15349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leduc EH, Wilson JW. An electron microscope study of intranuclear inclusions in mouse liver and hepatoma. J Biophys Biochem Cytol. 1959;6(3):427–30. https://doi.org/10.1083/jcb.6.3.427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lipsky MM, Hinton DE, Klaunig JE, Trump BF. Biology of hepatocellular neoplasia in the mouse. III. Electron microscopy of safrole-induced hepatocellular adenomas and hepatocellular carcinomas. J Natl Cancer Inst. 1981;67(2):393–405.

    CAS  PubMed  Google Scholar 

  71. Noro T, Gotohda N, Kojima M, Konishi M, Nakaghori T, Takahashi S, et al. Hepatocellular carcinoma with foamy histiocyte-like appearance: a deceptively clear cell carcinoma appearing variant. Case Rep Gastroenterol. 2010;4(2):286–92. https://doi.org/10.1159/000319545.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jin C, Yuan P. Implications of lipid droplets in lung cancer: Associations with drug resistance. Oncol Lett. 2020;20(3):2091–104. https://doi.org/10.3892/ol.2020.11769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;27(13):1447–61. https://doi.org/10.1101/gad.219642.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fujimoto M, Matsuzaki I, Yamamoto Y, Yoshizawa A, Warigaya K, Iwahashi Y, et al. Adipophilin expression in cutaneous malignant melanoma. J Cutan Pathol. 2017;44(3):228–36. https://doi.org/10.1111/cup.12868.

    Article  PubMed  Google Scholar 

  75. Giampietri C, Petrungaro S, Cordella M, Tabolacci C, Tomaipitinca L, Facchiano A, et al. Lipid Storage and Autophagy in Melanoma Cancer Cells. Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061271.

  76. Nordenberg J, Wasserman L, Peled A, Malik Z, Stenzel KH, Novogrodsky A. Biochemical and ultrastructural alterations accompany the anti-proliferative effect of butyrate on melanoma cells. Br J Cancer. 1987;55(5):493–7. https://doi.org/10.1038/bjc.1987.100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Puskas LG, Feher LZ, Vizler C, Ayaydin F, Raso E, Molnar E, et al. Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells. Lipids Health Dis. 2010;9:56. https://doi.org/10.1186/1476-511X-9-56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sainero-Alcolado L, Mushtaq M, Liano-Pons J, Rodriguez-Garcia A, Yuan Y, Liu T, et al. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. J Exp Clin Cancer Res. 2022;41(1):226. https://doi.org/10.1186/s13046-022-02399-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zirath H, Frenzel A, Oliynyk G, Segerstrom L, Westermark UK, Larsson K, et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci USA. 2013;110(25):10258–63. https://doi.org/10.1073/pnas.1222404110.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ghadially FN, Mehta PN. Ultrastructure of osteogenic sarcoma. Cancer. 1970;25(6):1457–67. https://doi.org/10.1002/1097-0142(197006)25:6%3c1457::aid-cncr2820250626%3e3.0.co;2-m.

    Article  CAS  PubMed  Google Scholar 

  81. Roy J, Dibaeinia P, Fan TM, Sinha S, Das A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. J Lipid Res. 2019;60(2):375–87. https://doi.org/10.1194/jlr.M088559.

    Article  CAS  PubMed  Google Scholar 

  82. Garbe LR, Monges GM, Pellegrin EM, Payan HL. Ultrastructural study of osteosarcomas. Hum Pathol. 1981;12(10):891–6. https://doi.org/10.1016/s0046-8177(81)80193-1.

    Article  CAS  PubMed  Google Scholar 

  83. Reddick RL, Michelitch HJ, Levine AM, Triche TJ. Osteogenic sarcoma: a study of the ultrastructure. Cancer. 1980;45(1):64–71. https://doi.org/10.1002/1097-0142(19800101)45:1%3c64::aid-cncr2820450112%3e3.0.co;2-5.

    Article  CAS  PubMed  Google Scholar 

  84. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. https://doi.org/10.1038/nm.2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Iwahashi N, Ikezaki M, Fujimoto M, Komohara Y, Fujiwara Y, Yamamoto M, et al. Lipid Droplet Accumulation Independently Predicts Poor Clinical Prognosis in High-Grade Serous Ovarian Carcinoma. Cancers (Basel). 2021;13(20). https://doi.org/10.3390/cancers13205251.

  86. Legrand M, Pariente R. Electron microscopy in the cytological examination of metastatic pleural effusions. Thorax. 1976;31(4):443–9. https://doi.org/10.1136/thx.31.4.443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sunami Y, Rebelo A, Kleeff J. Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. Cancers (Basel). 2017;10(1). https://doi.org/10.3390/cancers10010003.

  88. Chen M, Zhang J, Sampieri K, Clohessy JG, Mendez L, Gonzalez-Billalabeitia E, et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet. 2018;50(2):206–18. https://doi.org/10.1038/s41588-017-0027-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mao P, Nakao K, Angrist A. Human prostatic carcinoma: an electron microscope study. Cancer Res. 1966;26(5):955–73.

    CAS  PubMed  Google Scholar 

  90. Singh L, Nag TC, Kashyap S. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness. Tumour Biol. 2016;37(5):5797–803. https://doi.org/10.1007/s13277-015-4120-9.

    Article  CAS  PubMed  Google Scholar 

  91. Quincey C, Banerjee SS, Eyden BP, Vasudev KS. Lipid rich rhabdomyosarcoma. J Clin Pathol. 1994;47(3):280–2. https://doi.org/10.1136/jcp.47.3.280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zuppan CW, Mierau GW, Weeks DA. Lipid-rich rhabdomyosarcoma–a potential source of diagnostic confusion. Ultrastruct Pathol. 1991;15(4–5):353–9. https://doi.org/10.3109/01913129109016244.

    Article  CAS  PubMed  Google Scholar 

  93. Brown LJ, Aparicio SR. Malignant Warthin’s tumour: an ultrastructural study. J Clin Pathol. 1984;37(2):170–5. https://doi.org/10.1136/jcp.37.2.170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. He Y, Dong Y, Zhang X, Ding Z, Song Y, Huang X, et al. Lipid Droplet-Related PLIN2 in CD68(+) Tumor-Associated Macrophage of Oral Squamous Cell Carcinoma: Implications for Cancer Prognosis and Immunotherapy. Front Oncol. 2022;12:824235. https://doi.org/10.3389/fonc.2022.824235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sayers NS, Anujan P, Yu HN, Palmer SS, Nautiyal J, Franks S, et al. Follicle-Stimulating Hormone Induces Lipid Droplets via Galphai/o and beta-Arrestin in an Endometrial Cancer Cell Line. Front Endocrinol (Lausanne). 2021;12:798866. https://doi.org/10.3389/fendo.2021.798866.

    Article  PubMed  Google Scholar 

  96. Seyfried TN, Arismendi-Morillo G, Mukherjee P, Chinopoulos C. On the Origin of ATP Synthesis in Cancer. iScience. 2020;23(11):101761. https://doi.org/10.1016/j.isci.2020.101761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629–46. https://doi.org/10.1038/nrneph.2017.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol. 2021; 220(7). https://doi.org/10.1083/jcb.202102136.

  99. Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32(6):678–92. https://doi.org/10.1016/j.devcel.2015.01.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takagi T, Leszczynski D, Toda T, Kummerow F, Nishimori I. Ultrastructure of human umbilical artery and vein Characterization and quantification of lipid laden cells. Acta Pathol Jpn. 1985;35(5):1047–55. https://doi.org/10.1111/j.1440-1827.1985.tb00997.x.

    Article  CAS  PubMed  Google Scholar 

  101. Ward B, Harris P. Incorporation and distribution of 3H oleic acid in the isolated, perfused guinea-pig heart made hypoxic. J Mol Cell Cardiol. 1984;16(8):765–70. https://doi.org/10.1016/s0022-2828(84)80659-8.

    Article  CAS  PubMed  Google Scholar 

  102. Scarfo LM, Weller PF, Farber HW. Induction of endothelial cell cytoplasmic lipid bodies during hypoxia. Am J Physiol Heart Circ Physiol. 2001;280(1):H294-301. https://doi.org/10.1152/ajpheart.2001.280.1.H294.

    Article  CAS  PubMed  Google Scholar 

  103. Delprado WJ, Baird PJ. The fetal adrenal gland: definitive cortex cystic change, lipid patterns, and their relationship to fetal disease and maturity. Pathology. 1984;16(3):312–7. https://doi.org/10.3109/00313028409068543.

    Article  CAS  PubMed  Google Scholar 

  104. Schwartz P, Piper HM, Spahr R, Spieckermann PG. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am J Pathol. 1984;115(3):349–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Benador IY, Veliova M, Liesa M, Shirihai OS. Mitochondria Bound to Lipid Droplets: Where Mitochondrial Dynamics Regulate Lipid Storage and Utilization. Cell Metab. 2019;29(4):827–35. https://doi.org/10.1016/j.cmet.2019.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schuldiner M, Bohnert M. A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1188–96. https://doi.org/10.1016/j.bbalip.2017.06.005.

    Article  CAS  PubMed  Google Scholar 

  107. Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen B, et al. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nat Commun. 2017;8(1):766. https://doi.org/10.1038/s41467-017-00523-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med. 2023;29(1):115–26. https://doi.org/10.1038/s41591-022-02103-8.

    Article  CAS  PubMed  Google Scholar 

  109. Hou Y, Tan E, Shi H, Ren X, Wan X, Wu W, et al. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol Life Sci. 2024;81(1):23. https://doi.org/10.1007/s00018-023-05078-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guglielmi V, Nowis D, Tinelli M, Malatesta M, Paoli L, Marini M, et al. Bortezomib-Induced Muscle Toxicity in Multiple Myeloma. J Neuropathol Exp Neurol. 2017;76(7):620–30. https://doi.org/10.1093/jnen/nlx043.

    Article  CAS  PubMed  Google Scholar 

  111. Freitas I, Pontiggia P, Barni S, Bertone V, Parente M, Novarina A, et al. Histochemical probes for the detection of hypoxic tumour cells. Anticancer Res. 1990;10(3):613–22.

    CAS  PubMed  Google Scholar 

  112. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962;41(9):1776–804. https://doi.org/10.1172/JCI104637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boren J, Brindle KM. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 2012;19(9):1561–70. https://doi.org/10.1038/cdd.2012.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lehninger AL. The Mitochondrion: Molecular Basis of Structure and Function. New York: W.A. Benjamin, INC.; 1964.

    Google Scholar 

  115. Brand MD, Couture P, Else PL, Withers KW, Hulbert AJ. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J. 1991;275(Pt 1):81–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. https://doi.org/10.1042/BJ20110162.

    Article  CAS  PubMed  Google Scholar 

  117. Jezek P, Jaburek M, Holendova B, Engstova H, Dlaskova A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal. 2023. https://doi.org/10.1089/ars.2022.0173.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Miyazono Y, Hirashima S, Ishihara N, Kusukawa J, Nakamura KI, Ohta K. Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner. Sci Rep. 2018;8(1):350. https://doi.org/10.1038/s41598-017-18582-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seyfried TN. Respiratory dysfunction in cancer cells. Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. Hoboken, NJ: John Wiley & Sons; 2012. p. 73–105.

  120. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  121. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313(3):459–65. https://doi.org/10.1016/j.bbrc.2003.11.136.

    Article  CAS  PubMed  Google Scholar 

  122. Weinhouse S. The Warburg hypothesis fifty years later. Zeitschrift fur Krebsforschung und klinische Onkologie. 1976;87(2):115–26. https://doi.org/10.1007/BF00284370.

    Article  CAS  Google Scholar 

  123. Weinhouse S. On respiratory impairment in cancer cells. Science. 1956;124(3215):267–9. https://doi.org/10.1126/science.124.3215.267.

    Article  CAS  PubMed  Google Scholar 

  124. Burk D, Schade AL. On respiratory impairment in cancer cells. Science. 1956;124(3215):270–2.

    Article  CAS  PubMed  Google Scholar 

  125. Aisenberg AC. The Glycolysis and Respiration of Tumors. New York: Academic Press; 1961.

    Google Scholar 

  126. Duraj T, Carrion-Navarro J, Seyfried TN, Garcia-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab. 2021;54:101389. https://doi.org/10.1016/j.molmet.2021.101389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Doczi J, Karnok N, Bui D, Azarov V, Pallag G, Nazarian S, et al. Viability of HepG2 and MCF-7 cells is not correlated with mitochondrial bioenergetics. Sci Rep. 2023;13(1):10822. https://doi.org/10.1038/s41598-023-37677-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Arcos JC, Tison MJ, Gosch HH, Fabian JA. Sequential alterations in mitochondrial inner and outer membrane electron transport and in respiratory control during feeding of amino azo dyes; stability of phosphorylation. Correlation with swelling-contraction changes and tumorigenesis threshold. Cancer Res. 1969;29(6):1298–305.

    CAS  PubMed  Google Scholar 

  129. de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL, et al. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009;8:54. https://doi.org/10.1186/1476-4598-8-54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C, et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene. Oncotarget. 2013;4(4):584–99. https://doi.org/10.18632/oncotarget.965.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Leznev EI, Popova II, Lavrovskaja VP, Evtodienko YV. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells. Biochemistry (Mosc). 2013;78(8):904–8. https://doi.org/10.1134/S0006297913080063.

    Article  CAS  PubMed  Google Scholar 

  132. Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration. Int J Mol Sci. 2016;17(3). https://doi.org/10.3390/ijms17030341.

  133. Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005;102(17):5992–7. https://doi.org/10.1073/pnas.0502267102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. 2001;276(41):38061–7. https://doi.org/10.1074/jbc.M107067200.

    Article  CAS  PubMed  Google Scholar 

  135. Zhong H, Xiao M, Zarkovic K, Zhu M, Sa R, Lu J, et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radic Biol Med. 2017;102:67–76. https://doi.org/10.1016/j.freeradbiomed.2016.10.494.

    Article  CAS  PubMed  Google Scholar 

  136. Jahnke VE, Sabido O, Defour A, Castells J, Lefai E, Roussel D, et al. Evidence for mitochondrial respiratory deficiency in rat rhabdomyosarcoma cells. PLoS ONE. 2010;5(1):e8637. https://doi.org/10.1371/journal.pone.0008637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423–33. https://doi.org/10.1038/sj.cdd.4401950.

    Article  CAS  PubMed  Google Scholar 

  138. Zichri SB, Kolusheva S, Shames AI, Schneiderman EA, Poggio JL, Stein DE, et al. Mitochondria membrane transformations in colon and prostate cancer and their biological implications. Biochim Biophys Acta Biomembr. 2021;1863(1):183471. https://doi.org/10.1016/j.bbamem.2020.183471.

    Article  CAS  PubMed  Google Scholar 

  139. Kiebish MA, Bell R, Yang K, Phan T, Zhao Z, Ames W, et al. Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J Lipid Res. 2010;51(8):2153–70. https://doi.org/10.1194/jlr.M004796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008;49(12):2545–56. https://doi.org/10.1194/jlr.M800319-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Brain mitochondrial lipid abnormalities in mice susceptible to spontaneous gliomas. Lipids. 2008;43(10):951–9. https://doi.org/10.1007/s11745-008-3197-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mylonis I, Sembongi H, Befani C, Liakos P, Siniossoglou S, Simos G. Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression. J Cell Sci. 2012;125(Pt 14):3485–93. https://doi.org/10.1242/jcs.106682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM, et al. Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014;9(1):349–65. https://doi.org/10.1016/j.celrep.2014.08.056.

    Article  CAS  PubMed  Google Scholar 

  144. Lee DC, Ta L, Mukherjee P, Duraj T, Domin M, Greenwood B, Karmacharya S, Narain N, Kiebish M, Chinopoulos C, Seyfried TN.  Amino Acid and Glucose Fermentation Maintain ATP Content in Mouse and Human Malignant Glioma Cells. bioRxiv. April 2024. https://doi.org/10.1101/2024.04.18.589922.

  145. Slaughter AL, D’Alessandro A, Moore EE, Banerjee A, Silliman CC, Hansen KC, et al. Glutamine metabolism drives succinate accumulation in plasma and the lung during hemorrhagic shock. J Trauma Acute Care Surg. 2016;81(6):1012–9. https://doi.org/10.1097/TA.0000000000001256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chinopoulos C. Succinate in ischemia: Where does it come from? Int J Biochem Cell Biol. 2019;115:105580. https://doi.org/10.1016/j.biocel.2019.105580.

    Article  CAS  PubMed  Google Scholar 

  147. Flores RE, Brown AK, Taus L, Khoury J, Glover F, Kami K, et al. Mycoplasma infection and hypoxia initiate succinate accumulation and release in the VM-M3 cancer cells. Biochem Biophys Acta. 2018. https://doi.org/10.1016/j.bbabio.2018.03.012.

    Article  Google Scholar 

  148. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496(7444):238–42. https://doi.org/10.1038/nature11986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hochachka PW, Owen TG, Allen JF, Whittow GC. Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol. 1975;50(1):17–22. https://doi.org/10.1016/0305-0491(75)90292-8.

    Article  CAS  Google Scholar 

  150. Schworer S, Berisa M, Violante S, Qin W, Zhu J, Hendrickson RC, et al. Proline biosynthesis is a vent for TGFbeta-induced mitochondrial redox stress. EMBO J. 2020;39(8):e103334. https://doi.org/10.15252/embj.2019103334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bloch-Frankenthal L, Langan J, Morris HP, Weinhouse S. Fatty Acid Oxidation and Ketogenesis in Transplantable Liver Tumors. Cancer Res. 1965;25:732–6.

    CAS  PubMed  Google Scholar 

  152. Holm E, Hagmuller E, Staedt U, Schlickeiser G, Gunther HJ, Leweling H, et al. Substrate balances across colonic carcinomas in humans. Cancer Res. 1995;55(6):1373–8.

    CAS  PubMed  Google Scholar 

  153. Levine M. The growth of normal plant tissue in vitro as affected by chemical carcinogens and plant growth substances. II. The cytology of the carrot-root tissue. J Natl Cancer Inst. 1950;10(5):1005–41.

    CAS  PubMed  Google Scholar 

  154. Ciaranfi E. On the Ability of Tumor Tissue To Oxidize Fatty Acids in Vitro. Amer J Cancer. 1938;32:561–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Foundation for Metabolic Cancer Therapies, CrossFit Inc., Broken Science Initiative, Dr. Joseph Maroon, Dr. Edward Miller, Kenneth Rainin Foundation, the Corkin Family Foundation, Children with Cancer UK, and the Boston College Research Expense Fund for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the information presented in the manuscript. TNS wrote the manuscript. NLT, TD, DL, MK, CC, and GAM made material contributions to content.

Corresponding author

Correspondence to Thomas N. Seyfried.

Ethics declarations

Conflict of Interest

Michael A. Kiebish is VP of Platform and Translational Sciences for BPGbio with nothing else to disclose. All remaining authors declare they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyfried, T.N., Ta, N.L., Duraj, T. et al. Could Cytoplasmic Lipid Droplets be Linked to Inefficient Oxidative Phosphorylation in Cancer?. Curr. Tissue Microenviron. Rep. (2024). https://doi.org/10.1007/s43152-024-00057-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43152-024-00057-2

Keywords

Navigation