Skip to main content

Advertisement

Log in

Crosstalk Between Angiogenesis and Fibrogenesis in Liver Disease

  • Chronic Liver Disease (M Fernandez, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an overview of the different aspects involved in the crosstalk between fibrogenesis, angiogenesis, and inflammation, contributing to liver disease progression.

Recent Findings

Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated hepatic stellate cells are considered the central players in fibrosis, the participation of other cell types and co-existing pathogenic processes to the initiation and progression of fibrosis has become increasingly recognized.

Summary

Understanding the pathophysiology of fibrosis and the molecular bases of hepatic stellate cell activation is essential to define novel and more efficient targets of antifibrotic therapy to reduce incidence, morbidity, and mortality of the people suffering from chronic liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Tsuchida, T; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017, 14, 397–411 Excellent review highlighting the remarkable complexity and plasticity of hepatic stellate cell activation.

  2. Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis. 2004;36:231–42.

    PubMed  CAS  Google Scholar 

  3. Rosmorduc O, Wendum D, Corpechot C, Galy B, Sebbagh N, Raleigh J, et al. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol. 1999;155:1065–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Paternostro C, David E, Novo E, Parola M. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World J Gastroenterol. 2010;16:281–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Sato K, Kennedy L, Liangpunsakul S, Kusumanchi P, Yang Z, Meng F, et al. Intercellular communication between hepatic cells in liver diseases. Int J Mol Sci. 2019;20:2180.

    PubMed Central  CAS  Google Scholar 

  6. Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbé E, et al. Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol. 1996;24:100–11.

    PubMed  CAS  Google Scholar 

  7. Thomson J, Hargrove L, Kennedy L, Demieville J, Francis H. Cellular crosstalk during cholestatic liver injury. Liver Res. 2017;1:26–33.

    PubMed  PubMed Central  Google Scholar 

  8. Xiong, X.; Kuang, H.; Ansari, S.; Liu, T.; Gong, J.; Wang, S.; Zhao, X.Y.; Ji, Y.; Li, C.; Guo, L.; Zhou, L.; Chen, Z.; Leon-Mimila, P.; Chung, M.T.; Kurabayashi, K.; Opp, J.; Campos-Pérez, F.; Villamil-Ramírez, H.; Canizales-Quinteros, S.; Lyons, R.; Lumeng, C.N.; Zhou, B.; Qi, L.; Huertas-Vazquez, A.; Lusis, A.J.; Xu, X.Z.S.; Li, S.; Yu, Y.; Li, J.Z.; Lin, J.D. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 2019, 75, 644–660.

  9. Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008;48:920–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. •• Krenkel, O.; Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017, 17, 306–321 Excellent review highlighting novel findings regarding the origin, classification, and function of hepatic macrophages in healthy and diseased liver.

  11. Cai S, Cheng X, Pan X, Li J. Emerging role of exosomes in liver physiology and pathology. Hepatol Res. 2017;47:194–203.

    PubMed  Google Scholar 

  12. Moran L, Cubero FJ. Extracellular vesicles in liver disease and beyond. World J Gastroenterol. 2018;24:4519–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Witek RP, Yang L, Liu R, Jung Y, Omenetti A, Syn WK, et al. Liver cell-derived microparticles activate Hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. 2009;136:320–30.

    PubMed  CAS  Google Scholar 

  14. Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol. 2016;51:511–9.

    PubMed  CAS  Google Scholar 

  15. Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 2018;15:555–67.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim SY, Jeong JM, Kim SJ, Seo W, Kim MH, Choi WM, et al. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun. 2017;8:2247.

    PubMed  PubMed Central  Google Scholar 

  17. Li P, He K, Li J, Liu Z, Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol. 2017;85:222–9.

    PubMed  CAS  Google Scholar 

  18. Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut. 1960-1971;2014:63.

    Google Scholar 

  19. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.

    PubMed  CAS  Google Scholar 

  20. •• Seki, E.; De Minicis, S.; Osterreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007, 13, 1324–1332 Excellent work demonstrating that TLR4 drives myofibroblast activation and fibrogenesis in the liver and that TLR4-dependent modulation of TGF-beta signaling provides a link between proinflammatory and bava and profibrogenic signals.

  21. Jagavelu K, Routray C, Shergill U, O’Hara SP, Faubion W, Shah VH. Endothelial cell toll-like receptor 4 regulates fibrosis-associated angiogenesis in the liver. Hepatology. 2010;52:590–601.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56:769–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut. 2003;52:1347–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology. 1729-1738;2008:135.

    Google Scholar 

  25. Mashiba, S.; Mochida, S.; Ishikawa, K.; , Inao, M.; Matsui, A.; Ohno, A.; Ikeda, H.; Nagoshi, S.; Shibuya, M.; Fujiwara, K. Inhibition of hepatic stellate cell contraction during activation in vitro by vascular endothelial growth factor in association with upregulation of FLT tyrosine kinase receptor family, FLT-1. Biochem Biophys Res Commun 1999, 258, 674–678.

    PubMed  CAS  Google Scholar 

  26. Ishikawa K, Mochida S, Mashiba S, Inao M, Matsui A, Ikeda H, et al. Expressions of vascular endothelial growth factor in nonparenchymal as well as parenchymal cells in rat liver after necrosis. Biochem Biophys Res Commun. 1999;254:587–93.

    PubMed  CAS  Google Scholar 

  27. Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology. 2000;31:141–8.

    PubMed  CAS  Google Scholar 

  28. Ankoma-Sey V, Matli M, Chang KB, Lalazar A, Donner DB, Wong L, et al. Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing. Oncogene. 1998;17:115–21.

    PubMed  CAS  Google Scholar 

  29. Novo, E.; Cannito, S.; Zamara, E.; Valfrè di Bonzo, L.; Caligiuri, A.; Cravanzola, C.; Compagnone, A.; Colombatto, S.; Marra, F.; Pinzani, M.; Parola, M. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 2007, 170, 1942–1953.

  30. Copple BL, Bai S, Burgoon LD, Moon JO. Hypoxia-inducible factor-1α regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int. 2011;31:230–44.

    PubMed  CAS  Google Scholar 

  31. Moon JO, Welch TP, Gonzalez FJ, Copple BL. Reduced liver fibrosis in hypoxia-inducible factor-1 alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G582–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Rosmorduc O, Housset C. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis. 2010;30:258–70.

    PubMed  CAS  Google Scholar 

  33. Medina J, Arroyo AG, Sánchez-Madrid F, Moreno-Otero R. Angiogenesis in chronic inflammatory liver disease. Hepatology. 2004;39:1185–95.

    PubMed  CAS  Google Scholar 

  34. Fernandez M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009;50:604–20.

    PubMed  CAS  Google Scholar 

  35. DeLeve, L.D. Liver sinusoidal endothelial cells in hepatic fibrosis Hepatology 2015, 61, 1740-1746.

  36. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.

    PubMed  CAS  Google Scholar 

  37. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    PubMed  CAS  Google Scholar 

  38. Garcia-Monzon C, Sanchez-Madrid F, Garcia-Buey L, Garcia-Arroyo A, Garcia-Sanchez A, Moreno-Otero R. Vascular adhesion molecule expression in viral chronic hepatitis: evidence of neoangiogenesis in portal tracts. Gastroenterology. 1995;108:231–41.

    PubMed  CAS  Google Scholar 

  39. Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S, Lopez-Cabrera M, Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study. J Hepatol. 2005;42:124–31.

    PubMed  CAS  Google Scholar 

  40. Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int. 2011;31:146–62.

    PubMed  CAS  Google Scholar 

  41. Hoofring A, Boitnott J, Torbenson M. Three-dimensional reconstruction of hepatic bridging fibrosis in chronic hepatitis C viral infection. J Hepatol. 2003;5:738–41.

    Google Scholar 

  42. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis. 2001;21:397–416.

    PubMed  CAS  Google Scholar 

  43. Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression. Gut. 2001;49:565–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW. Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression. Am J Pathol. 2002;160:641–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. DeLeve LD. Hepatic microvasculature in liver injury. Semin Liver Dis. 2007;27:390–400.

    PubMed  CAS  Google Scholar 

  46. Elpek GO. Angiogenesis and liver fibrosis. World J Hepatol. 2015;7:377–91.

    PubMed  PubMed Central  Google Scholar 

  47. Park S, Kim JW, Kim JH, Lim CW, Kim B. Differential roles of angiogenesis in the induction of fibrogenesis and the resolution of fibrosis in liver. Biol Pharm Bull. 2015;38:980–5.

    PubMed  CAS  Google Scholar 

  48. Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol. 2015;13:477–88.

    Google Scholar 

  49. Zhang Z, Zhang F, Lu Y, Zheng S. Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res. 2015;45:162–78.

    PubMed  Google Scholar 

  50. Valfre di Bonzo, L.; Novo, E.; Cannito, S.; Busletta, C.; Paternostro, C.; Povero, D.; Parola, M. Angiogenesis and liver fibrogenesis. Histol Histopathol 2009, 24, 1323–1341.

  51. Parola M, Marra F, Pinzani M. Myofibroblast-like cells and liver fibrogenesis: emerging concepts in a rapidly moving scenario. Mol Asp Med. 2008;29:58–66.

    CAS  Google Scholar 

  52. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest. 1887-1901;2013:123.

    Google Scholar 

  53. Wang YQ, Ikeda K, Ikebe T, Hirakawa K, Sowa M, Nakatani K, et al. Inhibition of hepatic stellate cell proliferation and activation by the semisynthetic analogue of fumagillin TNP-470 in rats. Hepatology. 2000;32:980–9.

    PubMed  CAS  Google Scholar 

  54. Huang Y, Feng H, Kan T, Huang B, Zhang M, Li Y, et al. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One. 2013;8:e73492.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Tugues S, Fernandez-Varo G, Muñoz-Luque J, Ros J, Arroyo V, Rodés J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology. 1919-1926;2007:46.

    Google Scholar 

  56. Majumder S, Piguet AC, Dufour JF, Chatterjee S. Study of the cellular mechanism of sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis. Eur J Pharmacol. 2013;705:86–95.

    PubMed  CAS  Google Scholar 

  57. Mejias M, Garcia-Pras E, Tiani C, Miquel R, Bosch J, Fernandez M. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology. 2009;49:1245–56.

    PubMed  CAS  Google Scholar 

  58. Hong F, Chou H, Fiel MI, Friedman SL. Antifibrotic activity of sorafenib in experimental hepatic fibrosis: refinement of inhibitory targets, dosing and window of efficacy in vivo. Dig Dis Sci. 2013;58:257–64.

    PubMed  CAS  Google Scholar 

  59. Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–44.

    PubMed  CAS  Google Scholar 

  60. Mejias M, Coch L, Berzigotti A, Garcia-Pras E, Gallego J, Bosch J, et al. Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut. 2015;64:657–66.

    PubMed  CAS  Google Scholar 

  61. Coch L, Mejias M, Berzigotti A, Garcia-Pras E, Gallego J, Bosch J, et al. Disruption of negative feedback loop between vasohibin-1 and vascular endothelial growth factor decreases portal pressure, angiogenesis, and fibrosis in cirrhotic rats. Hepatology. 2014;60:633–47.

    PubMed  CAS  Google Scholar 

  62. Yang L, Kwon J, Popov Y, Gajdos GB, Ordog T, Brekken RA, et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology. 2014;146:1339–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Xie G, Wang X, Wang L, Wang L, Atkinson RD, Kanel GC, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology. 2012;142:918–27.

    PubMed  Google Scholar 

  64. Kantari-Mimoun, C.; Castells, M.; Klose, R.; Meinecke, A.K.; Lemberger, U.J.; Rautou, P.E.; Pinot-Roussel, H.; Badoual, C.; Schrödter, K.; Österreicher, C.H.; Fandrey, J.; Stockmann. C. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology 2015, 61, 2042–2055.

  65. Calderone V, Gallego J, Fernandez-Miranda G, Garcia-Pras E, Maillo C, Berzigotti A, et al. Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of vascular endothelial growth factor and angiogenesis in chronic liver disease. Gastroenterology. 2016;150:982–97.

    PubMed  CAS  Google Scholar 

  66. •• Bava, F.A.; Eliscovich, C.; Ferreira, P.G.; Miñana, B.; Ben-Dov, C.; Guigo, R.; Valcarcel, J.; Mendez, R. CPEB1 coordinates alternative 3′UTR formation with translational regulation. Nature 2013, 495, 121–125 Excellent work revealing a novel function of CPEB1 in mediating alternative 3′-UTR processing during cell proliferation and tumorigenesis, which is coordinated with regulation of mRNA translation, through its dual nuclear and cytoplasmic functions.

  67. Fernandez-Miranda G, Mendez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev. 2012;11:460–72.

    PubMed  CAS  Google Scholar 

  68. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132:434–48.

    PubMed  CAS  Google Scholar 

  69. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature. 2000;404:302–7.

    PubMed  CAS  Google Scholar 

  70. Maillo C, Martin J, Sebastian D, Hernandez-Alvarez M, Garcia-Rocha M, Reina O, et al. Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol. 2017;19:94–105.

    PubMed  CAS  Google Scholar 

  71. Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001;2:521–9.

    PubMed  CAS  Google Scholar 

  72. Garcia-Pras E, Gallego J, Coch L, Mejias M, Fernandez-Miranda G, Pardal R, et al. Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension. Gut. 2017;66:1306–20.

    PubMed  CAS  Google Scholar 

  73. •• Ortiz-Zapater, E.; Pineda, D.; Martinez-Bosch, N.; Fernandez-Miranda, G.; Iglesias, M.; Alameda, F.; Moreno, M.; Eliscovich, C.; Eyras, E.; Real, F.X.; Mendez, R.; Navarro, P. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 2011, 18, 83–90 Excellent study documenting a key role for post-transcriptional gene regulation in tumor development and describing a detailed mechanism for gene expression reprogramming underlying malignant tumor progression.

  74. Mejias, M.; Gallego, J.; Naranjo-Suarez, S.; Ramirez, M.; Pell, N.; Manzano, A.; Suñer, C.; Bartrons, R.; Mendez, R.; Fernandez, M. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology 2020, S0016-5085(20)30328–0. https://doi.org/10.1053/j.gastro.2020.03.008

Download references

Funding

This work was supported by grants from the Spanish Government (SAF2017-87988-R; PRE2018-083718), the Spanish Association Against Cancer, Worldwide Cancer Research Foundation, BBVA Foundation, La Caixa Foundation, and Marato TV3 Foundation. CIBERehd is an initiative from the Instituto de Salud Carlos III. IDIBAPS is supported by the CERCA Programme (Catalan Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Fernandez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Chronic Liver Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejias, M., Balvey, A. & Fernandez, M. Crosstalk Between Angiogenesis and Fibrogenesis in Liver Disease. Curr. Tissue Microenviron. Rep. 1, 121–129 (2020). https://doi.org/10.1007/s43152-020-00013-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00013-w

Keywords

Navigation