Skip to main content
Log in

Consistent EM algorithm for a spatial autoregressive probit model

  • Original Paper
  • Published:
Journal of Spatial Econometrics

Abstract

This paper is concerned with the estimation of spatial autoregressive probit models, which are increasingly used in many empirical settings. Among existing estimators, the EM algorithm for spatial probit models introduced by McMillen (J Reg Sci 32(3):335–348, 1992) is a widely used method, but it lacks proof of consistency. In this paper, we formally show that it is inconsistent by applying the law of large numbers for dependent and non-identically distributed near-epoch dependence (NED) random fields. We provide a modification of the EM algorithm to yield a consistent estimator. Monte Carlo experiments show that in finite samples, our new EM algorithm outperforms McMillen’s EM algorithm, especially for medium to high levels of spatial dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

The R codes for the estimation in this paper are available upon request.

Notes

  1. We consider spatial dependence on the latent variable rather than spatially correlated errors. The assumptions behind the spatial autoregressive and spatial error models are different. One assumes that agents’ behavior is interdependent, while the other assumes that the error term is spatially correlated.

  2. It is kindly pointed out by an anonymous reviewer that a more general setup would be using the geometric decaying specification (\(w_{ij,n}\le c_1 d(i,j)^{-c_2}\) for some \(c_1,c_2>0\)), which is widely used in nonlinear spatial econometric models. It is worth noting that our Assumption 1(2) is a special case of the geometric decaying specification. By Xu and Lee (2015) , it is possible that the NED properties shall still be established for terms like \(\{y^*_{i,n}\}_{i=1}^n\), \(\{y_{i,n}\}_{i=1}^n\) and \(\{z_{i,n}\}_{i=1}^n\) with some additional complexity, and with different NED coefficients. But it would likely to require an additional assumption like Assumption 12 in Xu and Lee (2015) that binds the decaying rate \(c_2\) so that it does not decay too slowly. This bound is not trivial to obtain, especially given that in our setting we have more complicated terms \(\{z_{i,n}(\theta ^{+})W_{i,n}^{c}Z_{n}(\theta ^{+})\}_{i=1}^{n}\), and \(\{z_{i,n}(\theta ^{+})W_{i,n}^{s}Z_{n}(\theta ^{+})\}_{i=1}^{n}\). Therefore, we restrict to this simpler setting of spatial dependence. To give an example of \(W_n\) that satisfies Assumption 1(2), we can consider a case where each agent is directly affected only by its nearest neighbor.

  3. Assumption 1(3) implies that \((I_n-\rho W_n)^{-1}=I_n+\rho W_n+\rho ^2 W_n^2+\cdots\) converges.

  4. It is important to note that the V-statistic in (15) is different from the standard V-statistics in the literature. For example, Proposition 1 of Lee (1992) gives the uniform law of large numbers for a V-statistic constructed from i.i.d random variables. Lemma 4.1 of (Cheng and Lee 2017) extends this law of large numbers to V-statistics based on independently but not necessarily identically distributed random variables. Nevertheless, a law of large numbers can be established by similar methods in our context.

  5. For consistency, it is sufficient to require that S goes to infinity as n goes to infinity. However, (Lee 1995) shows that asymptotic bias may occur when S increases slower than n. Hence, we require \(\lim _{n\rightarrow \infty } \frac{n}{S}=0\).

  6. These parameter values are chosen to be the same as the Monte Carlo experiments in Calabrese and Elkink (2014) so that the results can be compared.

  7. See https://www.rdocumentation.org/packages/mixAK/versions/5.3/topics/TMVN for more details.

References

  • Amemiya T (1985) Advanced econometrics. Harvard University Press, Cambridge

    Google Scholar 

  • Anselin L (2013) Spatial econometrics: methods and models. Springer Science & Business Media, Berlin

    Google Scholar 

  • Beron KJ, Vijverberg WPM (2004) Probit in a spatial context: a Monte Carlo analysis. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics: methodology, tools and applications. Springer, Berlin Heidelberg, pp 169–195

    Chapter  Google Scholar 

  • Calabrese R, Elkink JA (2014) Estimators of binary spatial autoregressive models: a Monte Carlo study. J Reg Sci 54(4):664–687

    Article  Google Scholar 

  • Cheng W, Lee L (2017) Testing endogeneity of spatial and social networks. Reg Sci Urban Econ 64:81–97

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc: Ser B (Methodol) 39(1):1–22

    Google Scholar 

  • Donald WKA (1992) Generic uniform convergence. Econ Theory 8(2):241–257

    Article  Google Scholar 

  • Elhorst JP, Pim H, Anna S, Jan PJ (2017) Transitions at different moments in time: A spatial probit approach. J Appl Econ 32(2):422–439

    Article  Google Scholar 

  • Fleming MM (2004) Techniques for estimating spatially dependent discrete choice models. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics: methodology, tools and applications. Springer, Berlin Heidelberg, pp 145–168

    Chapter  Google Scholar 

  • Hajivassiliou VA, Ruud PA (1994) Chapter 40 classical estimation methods for Ldv models using simulation. In: Engle R, McFadden D (eds) Handbook of econometrics, vol 4. Elsevier, pp 2383–2441

    Google Scholar 

  • Jenish N, Prucha IR (2012) On spatial processes and asymptotic inference under near-Epoch dependence. J Econ 170(1):178–190

    Article  Google Scholar 

  • Lee L-F (1992) On efficiency of methods of simulated moments and maximum simulated likelihood estimation of discrete response models. Econ Theory 8(4):518–552

    Article  Google Scholar 

  • Lee L-F (1995) Asymptotic bias in simulated maximum likelihood estimation of discrete choice models. Econ Theory 11(3):437–483

    Article  Google Scholar 

  • Lehmann EL (1975) Nonparametrics: statistical methods based on ranks, 1st edn. Springer, Berlin (Revised edition 2006)

    Google Scholar 

  • LeSage JP (2000) Bayesian estimation of limited dependent variable spatial autoregressive models. Geogr Anal 32(1):19–35

    Article  Google Scholar 

  • McLachlan GJ, Krishnan T (2007) The EM algorithm and extensions. Wiley, Hoboken

    Google Scholar 

  • McMillen DP (1992) Probit with spatial autocorrelation. J Reg Sci 32(3):335–348

    Article  Google Scholar 

  • Pinkse J, Slade ME (1998) Contracting in space: an application of spatial statistics to discrete-choice models. J Econ 85(1):125–154

    Article  Google Scholar 

  • Qu Xi, Lee L (2013) Locally most powerful tests for spatial interactions in the simultaneous SAR Tobit model. Reg Sci Urban Econ 43(2):307–321

    Article  Google Scholar 

  • Train KE (2009) Discrete choice methods with simulation. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang H, Iglesias EM, Wooldridge JM (2013) Partial maximum likelihood estimation of spatial probit models. J Econ 172(1):77–89

    Article  Google Scholar 

  • Wooldridge JM (2002) Econometric analysis of cross section and panel data. MIT Press, Cambridge

    Google Scholar 

  • Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11(1):95–103

    Article  Google Scholar 

  • Xu X, Lee L-F (2015) Maximum likelihood estimation of a spatial autoregressive Tobit model. J Econ 188(1):264–280

    Article  Google Scholar 

Download references

Acknowledgements

The author is very grateful for the insightful comments and suggestions offered by Lungfei Lee, Stephen Cosslett and two anonymous reviewers. Wei Cheng acknowledges support from National Science Foundation of China (71803047) and Shanghai Pujiang Program (2019PJC022). Errors and omissions are my own.

Funding

This study was funded by National Science Foundation of China (71803047) and Shanghai Pujiang Program (2019PJC022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cheng.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Ethical approval

The author confirms that this paper is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Notations

  • n : sample size

  • \(\{\varepsilon _{i,n}\}_{i=1}^n\) : i.i.d. normal error term

  • \(\{y_{i,n}\}_{i=1}^n\) : observed binary outcome variable

  • \(\{y^*_{i,n}\}_{i=1}^n\) : continuous latent variable

  • \(U_n= (I_{n}-\rho W_{n})^{-1}\varepsilon _{n}\)

  • \(\theta =(\beta ',\rho )'\) : parameters

  • \(x_{i,n}^{*'}\) : the \(i^{th}\) row of \(X_{n}^*\equiv (I_{n}-\rho W_{n})^{-1}X_{n}\)

  • \(z_{i,n}(\theta ^{+})=E(y_{i,n}^{*}|y_{i,n},\theta ^{+})\)

  • \(\Upsilon _{n}(\rho )=Var(Y_{n}^{*})\)

  • \(\sigma _{ii,n}=\sqrt{\Upsilon _{ii,n}(\rho )}\), where \(\Upsilon _{ii,n}(\rho )\) is the element on the \(i^{th}\) row and \(i^{th}\) column of \(\Upsilon _{n}(\rho )\)

  • \(\Gamma (\theta ^{+},\theta _0)=(\omega _{1,n}(\theta ^{+},\theta _0),\ldots ,\omega _{n,n}(\theta ^{+},\theta _0))'\)

  • \(A_{1}=\lim _{n\rightarrow \infty } \frac{1}{n}X_{n}'X_{n}\)

  • \(\Lambda (\theta ^{+},\theta _0)=Var(Z_{n}(\theta ^{+})|\theta _0)\)

1.2 Proofs

Lemma

Under Assumption 1,

  1. (i)

    \(\{u_{i,n}\}_{i=1}^{n}\)is uniformly \(L_{p}\) bounded, i.e \(sup_{i,n}E|u_{i,n}|^{p}<\infty\) where p is a positive integer.

  2. (ii)

    \(\{u_{i,n}\}_{i=1}^{n}\) is a uniformly and geometrically \(L_{2}\)-NED random field on \(\{\varepsilon _{i,n}\}_{i=1}^{n}\) with NED coefficient \(\zeta ^{s/\bar{d}}\).

Proof

If \(\{\varepsilon _{i,n}\}_{i=1}^{n}\) are independent and identically distributed with \(E|\varepsilon _{i,n}|^{p}<\infty\), \(M=(m_{i,j,n})\) is a nonstochastic \(n\times n\) matrix with \(||M||_{\infty }<B,\) then \(E[(\sum _{j=1}^{n}|m_{i,j,n}\varepsilon _{j,n}|)^{p}]\le E|\varepsilon _{1,n}|^{p}B^{p}\) (Xu and Lee 2015).

Recall that \(U_{n}=(I_{n}-\rho W_{n})^{-1}\varepsilon _{n}\). Let \(M_{n}=(I_{n}-\rho W_{n})^{-1}\), we have \(u_{i,n}=\sum _{j=1}^{n}m_{i,j,n}\varepsilon _{j,n}\).

$$\begin{aligned} ||M_{n}||_{\infty }= & {} ||\sum _{l=0}^{n}\rho ^{l}W_{n}^{l}||_{\infty }\\\le & {} \sum _{l=0}^{n}||\rho ^{l}W_{n}^{l}||_{\infty }\\\le & {} \sum _{l=0}^{n}\zeta ^{l}=\frac{1}{1-\zeta }. \end{aligned}$$

In addition, \(\{\varepsilon _{i,n}\}_{i=1}^{n}\) is i.i.d normal distributed. Hence \(E|u_{i,n}|^{p}\le E|\varepsilon _{1,n}|^{p}(\frac{1}{1-\zeta })^{p}\), and \(sup_{i,n}E|u_{i,n}|^{p}\le sup_{n}E|\varepsilon _{1,n}|^{p}(\frac{1}{1-\zeta })^{p}<\infty\).

Next, we construct a sequence: \(U_{n}^{(0)}=\iota _{n}\equiv (1,1,\ldots ,1)'\), \(U_{n}^{(m+1)}=\rho W_{n}U_{n}^{(m)}+\varepsilon _{n}\), \(\forall m=0,1,2,\ldots ,\infty\). Since \(U_{n}=(I_{n}-\rho W_{n})^{-1}\varepsilon _{n}=\sum _{j=1}^{\infty }\rho ^{j}W_{n}^{j}\varepsilon _{n}\), it follows that \(U_{n}^{(m)}\rightarrow U_{n}\) as \(m\rightarrow \infty\).

$$\begin{aligned} |u_{i,n}^{(m+1)}-u_{i,n}^{(m)}|&=|\rho \sum _{j=1}^{n}w_{i,j,n}(u_{j,n}^{(m)}-u_{j,n}^{(m-1)})|\le \rho \sum _{j=1}^{n}w_{i,j,n}|u_{j,n}^{(m)}-u_{j,n}^{(m-1)}|.\\ |u_{i,n}^{(m+1)}-u_{i,n}^{(m)}|^{2}&\le \rho ^{2}\sum _{j=1}^{n}\sum _{k=1}^{n}w_{i,j,n}w_{i,k,n}|u_{j,n}^{(m)}-u_{j,n}^{(m-1)}||u_{k,n}^{(m)}-u_{k,n}^{(m-1)}|.\\ E|u_{i,n}^{(m+1)}-u_{i,n}^{(m)}|^{2}&\le \rho ^{2}\sum _{j=1}^{n}\sum _{k=1}^{n}w_{i,j,n}w_{i,k,n}E[|u_{j,n}^{(m)}-u_{j,n}^{(m-1)}||u_{k,n}^{(m)}-u_{k,n}^{(m-1)}|]\\&\le \rho ^{2}\sum _{j=1}^{n}\sum _{k=1}^{n}w_{i,j,n}w_{i,k,n}||u_{j,n}^{(m)}-u_{j,n}^{(m-1)}||_{2}\cdot ||u_{k,n}^{(m)}-u_{k,n}^{(m-1)}||_{2}\\&\le \rho ^{2}||W_{n}||_{\infty }^{2}\{max_{1\le j\le n}\{||u_{j,n}^{(m)}-u_{j,n}^{(m-1)}||_{2}\}\}^{2}, \end{aligned}$$

where the penultimate inequality is by Holder’s inequality: \(E|XY|\le ||X||_{2}||Y||_{2}\).

$$\begin{aligned} ||u_{i,n}^{(m+1)}-u_{i,n}^{(m)}||_{2}\le \rho ||W_{n}||_{\infty }max_{1\le j\le n}\{||u_{j,n}^{(m)}-u_{j,n}^{(m-1)}||_{2}\}\le \zeta \cdot max_{1\le j\le n}\{||u_{j,n}^{(m)}-u_{j,n}^{(m-1)}||_{2}\}. \end{aligned}$$

Since only individuals located within a distance of \(\bar{d}\) have influence on each other, \(u_{i,n}^{(m)}\) is a function of \(\varepsilon _{j,n}\)’s where \(d(i,j)\le m\bar{d}\). Therefore,

$$\begin{aligned} ||u_{i,n}-E(u_{i,n}|\mathcal {F}_{i,n}(m\bar{d})||_{2}\le ||u_{i,n}-u_{i,n}^{(m)}||_{2}\le \zeta \cdot max_{1\le j\le n}\{||u_{j,n}-u_{j,n}^{(m-1)}||_{2}\}\le \zeta ^{m}c_{n}, \end{aligned}$$

where \(c_{n}=max_{1\le j\le n}\{||u_{j,n}-u_{j,n}^{(0)}||_{2}\}\le sup_{1\le j\le n}||u_{j,n}||_{2}+1\). By Lemma 1, \(c_{n}<\infty\). Hence, \(||u_{i,n}-E(u_{i,n}|\mathcal {F}_{i,n}(s)||_{2}\le \zeta ^{s/\bar{d}}c_{n}\), where \(\zeta \in (0,1)\) and \(\bar{d}>1\). Therefore, \(\{u_{i,n}\}_{i=1}^{n}\) is a uniformly and geometrically \(L_{2}\)-NED random field on \(\{\varepsilon _{i,n}\}_{i=1}^{n}\). \(\square\)

Lemma

Under Assumption 1, \(\{y_{i,n}^{*}\}_{i=1}^{n}\), \(\{y_{i,n}\}_{i=1}^{n}\), \(\{z_{i,n}(\theta ^{+})\}_{i=1}^{n}\), \(\{x_{i,n}'\beta \cdot W_{i,n}Z_{n}(\theta ^{+})\}_{i=1}^{n}\), \(\{z_{i,n}(\theta ^{+})^{2}\}_{i=1}^{n}\), \(\{z_{i,n}(\theta ^{+})W_{i,n}Z_{n}(\theta ^{+})\}_{i=1}^{n}\), \(\{z_{i,n}(\theta ^{+})W_{i,n}^{c}Z_{n}(\theta ^{+})\}_{i=1}^{n}\), \(\{z_{i,n}(\theta ^{+})W_{i,n}^{s}Z_{n}(\theta ^{+})\}_{i=1}^{n}\) are uniformly and geometrically \(L_{2}\)-NED random fields on \(\{\varepsilon _{i,n}\}_{i=1}^{n}\).

Proof

Given that \(y_{i,n}^{*}=x_{i,n}^{*'}\beta +u_{i,n}\), \(x_{i,n}^{*'}\beta\) is non-stochastic and uniformly bounded, and \(\{u_{i,n}\}_{i=1}^{n}\) is shown to be an NED random field, it follows that \(\{y_{i,n}^{*}\}_{i=1}^{n}\) is an NED random field. Hence, as in Proposition 2 of Xu and Lee (2015), \(y_{i,n}=\varvec{1}(y_{i,n}^{*}>0)\) is an NED random field.

For brevity, we suppress z’s dependence on \(\theta ^{+}\) in the notations.

$$\begin{aligned} z_{i,n}&=E(y_{i,n}^{*}|y_{i,n})\\&=x_{i,n}^{*'}\beta +\sigma _{ii,n}\frac{\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}{\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}y_{i,n}-\sigma _{ii,n}\frac{\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}{1-\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}(1-y_{i,n})\\&=x_{i,n}^{*'}\beta +\sigma _{ii,n}\frac{\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}{\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})[1-\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})]}y_{i,n}-\sigma _{ii,n}\frac{\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}{1-\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}. \end{aligned}$$

Given that \(\{y_{i,n}\}_{i=1}^{n}\) is an NED random field, and that \(z_{i,n}\) is a linear transformation of \(y_{i,n}\), to prove that \(\{z_{i,n}\}_{i=1}^{n}\) is also an NED random field requires that i) \(\sigma _{ii,n}\) is uniformly bounded, ii) \(\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})\) is uniformly bounded and iii) \(\exists c_1,c_2\) such that \(0<c_1<\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})<c_2<1\). Considering Assumption 1(4)–(5), and

$$\begin{aligned} \sigma _{ii,n}&=\sqrt{[(I_{n}-\rho W_{n})^{-1}(I_{n}-\rho W_{n})^{-1'}]_{i,i}}\\&\le ||(I_{n}-\rho W_{n})^{-1}(I_{n}-\rho W_{n})^{-1'}||_{\infty }\\&\le ||(I_{n}-\rho W_{n})^{-1}||_{\infty }||(I_{n}-\rho W_{n})^{-1'}||_{\infty }\\&\le \frac{1}{(1-\zeta )(1-\varsigma )}\\&<+\infty . \end{aligned}$$

It follows that \(\{z_{i,n}\}_{i=1}^{n}\) is also an NED random field.

Since \(\{z_{i,n}\}_{i=1}^{n}\) is a uniformly and geometrically \(L_{2}-\)NED random field, by definition, there exists an array of finite postie constants \(\{d_{i,n},i\in D_{n},i\ge 1\}\) where \(\sup _{n}\sup _{i\in D_{n}}d_{i,n}<\infty\) and a sequence \(\psi (s)=O(p^{s})\) where \(0<p<1\) such that \(||z_{i,n}-E(z_{i,n}|\mathcal {F}_{i,n}(s))||_{2}\le d_{i,n}\psi (s)\).

$$\begin{aligned} ||x_{i,n}'\beta \cdot W_{i,n}Z_{n}-x_{i,n}'\beta \cdot E(W_{i,n}Z_{n}|\mathcal {F}_{i,n}(s))||_{2}&\le |x_{i,n}'\beta |\cdot \sum _{j=1}^{n}w_{i,j,n}||z_{i,n}-E(z_{i,n}|\mathcal {F}_{i,n}(s))||_{2}\\&\le |x_{i,n}'\beta |\cdot \sum _{j=1}^{n}w_{i,j,n}d_{i,n}\psi (s)\\&\le d_{max}\psi (s)||W_{n}||_{\infty }, \end{aligned}$$

where \(d_{max}=\sup _{i,n}\{|x_{i,n}'\beta |\cdot d_{i,n}\}<\infty\), and \(||W_{n}||<\infty\), so \(\{W_{i,n}Z_{n}\}_{i=1}^{n}\) is also a uniformly and geometrically \(L_{2}\)-NED random field on \(\{\varepsilon _{i,n}\}_{i=1}^{n}\).

By Lemma A.4 in Xu and Lee (2015), “\(G(x):Domain\rightarrow R\) satisfies \(|G(x_{1})-G(x_{2})|\le C_{1}(|x_{1}|^{a}+|x_{2}|^{a}+1)|x_{1}-x_{2}|\) for some integer \(a\ge 1\). If \(\{\nu _{i,n}\}_{i=1}^{n}\) is a random field with \(||\nu _{i,n}-E(\nu _{i,n}|\mathcal {F}_{i,n}(s))||_{2}\le C_{2}\psi (s)\) for all i and n, and \(sup_{i,n}||\nu _{i,n}||_{p}<\infty\) for some \(p>2a+2\). Then \(||G(\nu _{i,n})-E(G(\nu _{i,n})|\mathcal {F}_{i,n}(s))||_{2}\le C\psi (s)^{(p-2a-2)/(2p-2a-2)}\).”

In this case, \(G(z)=z^{2}\). \(|G(z_{1})-G(z_{2})|=|z_{1}^{2}-z_{2}^{2}|=|z_{1}+z_{2}|\cdot |z_{1}-z_{2}|\le (|z_{1}|+|z_{2}|+1)\cdot |z_{1}-z_{2}|\). And we know \(sup_{i,n}||z_{i,n}||_{p}<\infty\) for any finite integer p, so the above lemma holds with \(a=1\). \(||z_{i,n}^{2}-E(z_{i,n}^{2}|\mathcal {F}_{i,n}(s))||_{2}\le C\psi (s)^{\frac{p-4}{2p-4}}\).

Since \(\{z_{i,n}\}_{i=1}^{n}\) is an NED random field, by definition, there exist constants \(R_{1}<+\infty\) and \(h\in (0,1)\) such that \(||z_{i,n}-E(z_{i,n}|\mathcal {F}_{i,n}(s))||_{2}\le R_{1}h^{s}\). Because spatial correlation is zero for two individuals whose distance is greater than \(\bar{d}\), \(z_{i,n}W_{i,n}Z_{n}=z_{i,n}\sum _{j=1}^{n}w_{i,j,n}z_{j,n}=\sum _{\{j:d(i,j)<\bar{d}\}}w_{i,j,n}z_{i,n}z_{j,n}\). For any j such that \(d(i,j)<\bar{d}\), and any \(m>1\),

$$\begin{aligned}&||z_{i,n}z_{j,n}-E(z_{i,n}z_{j,n}|\mathcal {F}_{i,n}(m\bar{d})||_{2}\\&\le ||z_{i,n}z_{j,n}-E(z_{i,n}|\mathcal {F}_{i,n}(m\bar{d}))E(z_{j,n}|\mathcal {F}_{i,n}(m\bar{d}))||_{2}\\&=||z_{i,n}z_{j,n}-z_{j,n}E(z_{i,n}|\mathcal {F}_{i,n}(m\bar{d}))+z_{j,n}E(z_{i,n}|\mathcal {F}_{i,n}(m\bar{d}))-E(z_{i,n}|\mathcal {F}_{i,n}(m\bar{d}))E(z_{j,n}|\mathcal {F}_{i,n}(m\bar{d}))||_{2}\\&\le |z_{j,n}|\cdot ||z_{i,n}-E(z_{i,n}|\mathcal {F}_{i,n}(m\bar{d}))||_{2}+|E(z_{i,n}|\mathcal {F}_{i,n}(m\bar{d}))|\cdot ||z_{j,n}-E(z_{j,n}|\mathcal {F}_{i,n}(m\bar{d}))||_{2}\\&\le RR_{2}h^{m\bar{d}}+R_{3}||z_{j,n}-E(z_{j,n}|\mathcal {F}_{j,n}((m-1)\bar{d}))||_{2}\\&\le RR_{2}h^{m\bar{d}}+RR_{3}h^{(m-1)\bar{d}}\\&=R_{4}h^{m\bar{d}}, \end{aligned}$$

where \(R_{2}=\sup _{i,n}|z_{i,n}|<+\infty\), \(R_{3}=\sup _{i,n,s}|E(z_{i,n}|\mathcal {F}_{i,n}(s))|<+\infty\), \(R_{4}=RR_{2}+RR_{3}\frac{1}{\bar{d}}<+\infty\). Thus, \(||z_{i,n}z_{j,n}-E(z_{i,n}z_{j,n}|\mathcal {F}_{i,n}(s)||_{2}\le R_{4}h^{s}\). It follows that

$$\begin{aligned} ||z_{i,n}W_{i,n}Z_{n}-E(z_{i,n}W_{i,n}Z_{n}|\mathcal {F}_{i,n}(s))||_{2}&\le \sum _{\{j:d(i,j)<\bar{d}\}}w_{i,j,n}||z_{i,n}z_{j,n}-E(z_{i,n}z_{j,n}|\mathcal {F}_{i,n}(s))||_{2}\\&\le R_{4}||W_{n}||_{\infty }h^{s}\\&\le \frac{R_{4}}{\rho _{m}}h^{s}. \end{aligned}$$

Therefore, \(\{z_{i,n}W_{i,n}Z_{n}\}_{i=1}^{n}\) is a uniformly and geometrically \(L_{2}\)-NED random field. The same proof applies to \(\{z_{i,n}W_{i,n}^{c}Z_{n}\}_{i=1}^{n}\) and \(\{z_{i,n}W_{i,n}^{s}Z_{n}\}_{i=1}^{n}\). \(\square\)

Proposition

Under Assumption 1, assuming \(\frac{1}{n}X_{n}'X_{n}\overset{}{\rightarrow }A_{1}\) then \(\frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})\overset{p}{\rightarrow }\tilde{Q}_{\infty }(\theta |\theta ^{+})\) pointwisely in \((\theta ,\theta ^{+})\in \Theta \times \Theta\), where \(\tilde{Q}_{\infty }(\theta |\theta ^{+})= -\frac{1}{2}(\ln 2\pi )+\lim _{n\rightarrow \infty }\frac{1}{n}\ln |I_{n}-\rho W_{n}| -\frac{1}{2}(\beta ^{+}-\beta )'A_{1}(\beta ^{+}-\beta ) -\lim _{n\rightarrow \infty }\frac{1}{2n} \Gamma (\theta ^{+},\theta _0)'(I_{n}-\rho W_{n})'(I_{n}-\rho W_{n})\Gamma (\theta ^{+},\theta _0) -\lim _{n\rightarrow \infty }\frac{1}{n} \Gamma (\theta ^{+},\theta _0)'(I_{n}-\rho W_{n})'X_n(\beta ^{+}-\beta ) -\lim _{n\rightarrow \infty }\frac{1}{2n}tr[(I_{n}-\rho W_{n})'(I_{n}-\rho W_{n})\Lambda (\theta ^{+},\theta _0)]\), and \(\Lambda (\theta ^{+},\theta _0)=Var(Z_{n}(\theta ^{+})|\theta _0)\).

Proof

Reorganizing the terms in Eq. (12), we have

$$\begin{aligned} \tilde{Q}_{n}(\theta |\theta ^{+})=-\frac{n}{2}(\ln 2\pi )+\ln |I_{n}-\rho W_{n}|-\frac{1}{2}((I_{n}-\rho W_{n})Z_{n}(\theta ^{+})-X_{n}\beta )'\cdot ((I_{n}-\rho W_{n})Z_{n}(\theta ^{+})-X_{n}\beta ). \end{aligned}$$

First,

$$\begin{aligned} \frac{1}{n}\beta 'X_{n}X_{n}\beta \overset{p}{\rightarrow }\beta 'A_{1}\beta . \end{aligned}$$

Second, by applying Theorem 1, we can obtain

$$\begin{aligned}&\frac{1}{n}\beta 'X_{n}'[Z_{n}(\theta ^{+})-\rho W_{n}Z_{n}(\theta ^{+})]\\&=\frac{1}{n}\sum _{i=1}^{n}x_{i,n}'\beta [z_{i,n}(\theta ^{+})-\rho W_{i,n}Z_{n}(\theta ^{+})]\\&\overset{p}{\rightarrow }\lim _{n\rightarrow \infty }\frac{1}{n}\sum _{i=1}^{n}x_{i,n}'\beta \cdot E[z_{i,n}(\theta ^{+})-\rho W_{i,n}Z_{n}(\theta ^{+})]\\&\overset{p}{\rightarrow }\lim _{n\rightarrow \infty }\frac{1}{n}\beta 'X_{n}(I_{n}-\rho W_{n})(X_{n}^{*'}\beta ^{+}+\Gamma (\theta ^{+},\theta _0))\\&=\beta 'A_{1}\beta ^{+}+\lim _{n\rightarrow \infty }\frac{1}{n}\beta 'X_{n}'(I_{n}-\rho W_{n})\Gamma (\theta ^{+},\theta _0). \end{aligned}$$

Third,

$$\begin{aligned}&\frac{1}{n}[Z_{n}(\theta ^{+})'Z_{n}(\theta ^{+})-\rho Z_{n}(\theta ^{+})'W_{n}'Z_{n}(\theta ^{+})-\rho Z_{n}(\theta ^{+})'W_{n}Z_{n}(\theta ^{+})+\rho ^{2}Z_{n}(\theta ^{+})'W_{n}'W_{n}Z_{n}(\theta ^{+})]\\&=\frac{1}{n}\sum _{i=1}^{n}[z_{i,n}^{2}(\theta ^{+})-\rho z_{i,n}(\theta ^{+})W_{i,n}Z_{n}(\theta ^{+})-\rho z_{i,n}(\theta ^{+})W_{i,n}^{c}Z_{n}(\theta ^{+})+\rho ^{2}z_{i,n}(\theta ^{+})W_{i,n}^{s}Z_{n}(\theta ^{+})]\\&\overset{p}{\rightarrow }\lim _{n\rightarrow \infty }\frac{1}{n}\sum _{i=1}^{n}E[z_{i,n}^{2}(\theta ^{+})-\rho z_{i,n}(\theta ^{+})W_{i,n}Z_{n}(\theta ^{+})-\rho z_{i,n}(\theta ^{+})W_{i,n}^{c}Z_{n}(\theta ^{+})+\rho ^{2}z_{i,n}(\theta ^{+})W_{i,n}^{s}Z_{n}(\theta ^{+})]. \end{aligned}$$

Since \(Var(z_{i,n}(\theta ^{+}))=(\sigma _{ii,n}^{+})^{2}\frac{\phi (x_{i,n}^{*'}\beta ^{+}/\sigma _{ii,n}^{+})^{2}}{\Phi (x_{i,n}^{*'}\beta ^{+}/\sigma _{ii,n}^{+})^2[1-\Phi (x_{i,n}'\beta ^{+}/\sigma _{ii,n}^{+})]^2}\Phi (x_{i,n}^{*'}\beta _0/\sigma _{ii,0}^{+})[1-\Phi (x_{i,n}^{*'}\beta _0/\sigma _{ii,0})]\) and \(E[z_{i,n}(\theta ^{+})^{2}]=(x_{i,n}^{*'}\beta ^{+})^{2}+2\omega _{i,n}(\theta ^{+})x_{i,n}^{*'}\beta ^{+}+\omega _{i,n}(\theta ^{+})^2+Var(z_{i,n}(\theta ^{+}))\), define \(\Lambda (\theta ^{+},\theta _0)=Var(Z_{n}(\theta ^{+}))\), we have

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}E[z_{i,n}(\theta ^{+})^{2}] =&\frac{1}{n}\beta ^{+'}X_{n}^{*'}X_{n}^*\beta ^{+}+\frac{2}{n}\beta ^{+'}X_{n}^{*'}\Gamma (\theta ^{+},\theta _0)\\&+\frac{1}{n}\Gamma (\theta ^{+},\theta _0)'\Gamma (\theta ^{+},\theta _0)+\frac{1}{n}tr(\Lambda (\theta ^{+},\theta _0)). \end{aligned}$$

Henceforth,

$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{1}{n}\sum _{i=1}^{n}E[z_{i,n}^{2}(\theta ^{+})-\rho z_{i,n}(\theta ^{+})W_{i,n}Z_{n}(\theta ^{+})-\rho z_{i,n}(\theta ^{+})W_{i,n}^{c}Z_{n}(\theta ^{+})+\rho ^{2}z_{i,n}(\theta ^{+})W_{i,n}^{s}Z_{n}(\theta ^{+})]\\&=\beta ^{+'}A_{1}\beta ^{+}+\lim _{n\rightarrow \infty }\frac{2}{n}\beta ^{+'}X_{n}'(I_{n}-\rho W_{n})\Gamma (\theta ^{+},\theta _0)+\lim _{n\rightarrow \infty }\frac{1}{n}tr[(I_{n}-\rho W_{n})'(I_{n}-\rho W_{n})\Lambda (\theta ^{+},\theta _0)] \\&+\lim _{n\rightarrow \infty }\frac{1}{n}\Gamma (\theta ^{+},\theta _0)'(I_{n}-\rho W_{n})'(I_{n}-\rho W_{n})\Gamma (\theta ^{+},\theta _0). \end{aligned}$$

Therefore, summing up all the terms we can get

$$\begin{aligned} \frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})&\overset{p}{\rightarrow } -\frac{1}{2}(\ln 2\pi )+\lim _{n\rightarrow \infty }\frac{1}{n}\ln |I_{n}-\rho W_{n}| -\frac{1}{2}(\beta ^{+}-\beta )'A_{1}(\beta ^{+}-\beta ) \\&-\lim _{n\rightarrow \infty }\frac{1}{2n} \Gamma (\theta ^{+},\theta _0)'(I_{n}-\rho W_{n})'(I_{n}-\rho W_{n})\Gamma (\theta ^{+},\theta _0)\\&-\lim _{n\rightarrow \infty }\frac{1}{n} \Gamma (\theta ^{+},\theta _0)'(I_{n}-\rho W_{n})'X_n(\beta ^{+}-\beta ) \\&-\lim _{n\rightarrow \infty }\frac{1}{2n}tr[(I_{n}-\rho W_{n})'(I_{n}-\rho W_{n})\Lambda (\theta ^{+},\theta _0)]\\&=\tilde{Q}_{\infty }(\theta |\theta ^{+}). \end{aligned}$$

\(\square\)

Proposition

Under the assumptions in Proposition 1, \(\frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})\overset{p}{\rightarrow }\tilde{Q}_{\infty }(\theta |\theta ^{+})\) uniformly in \((\theta ,\theta ^{+})\in \Theta \times \Theta\), that is, \(\sup _{(\theta ,\theta ^{+})\in \Theta \times \Theta }|\frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})-\tilde{Q}_{\infty }(\theta |\theta ^{+})|=0\).

Proof

Because the parameter space is compact by assumption and pointwise convergence is given in Proposition 1, according to Theorem 1 in Donald (1992), we only need to show that \(\frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})\) is stochastically equicontinous in order to prove uniform convergence.

Examine each term in Eq. (12). First, using the mean value theorem, we have:

$$\begin{aligned} |\frac{1}{n}\ln |I_{n}-\rho _{1}W_{n}|-\frac{1}{n}\ln |I_{n}-\rho _{2}W_{n}||&=\frac{1}{n}|\frac{\partial \ln |I_{n}-\bar{\rho }W_{n}|}{\partial \rho }|\cdot |\rho _{1}-\rho _{2}|\\&=\frac{1}{n}|tr((I_{n}-\bar{\rho }W_{n})^{-1}W_{n})|\cdot |\rho _{1}-\rho _{2}|\\&\le \sup _{n}||(I_{n}-\bar{\rho }W_{n})^{-1}W_{n}||_{\infty }\cdot |\rho _{1}-\rho _{2}|\\&\le \sup _{n}||\sum _{j=0}^{n}\rho _{m}^{j}W_{n}^{j+1}||_{\infty }\cdot |\rho _{1}-\rho _{2}|\\&\le \frac{1}{\rho _{m}}\frac{\zeta }{1-\zeta }\cdot |\rho _{1}-\rho _{2}|, \end{aligned}$$

where \(\bar{\rho }\) is between \(\rho _{1}\) and \(\rho _{2}\), and \(\rho _{m}=\sup \{|\rho |:\rho \in \varvec{\rho }\}\).

$$\begin{aligned} |\frac{1}{n}\beta _{1}'X_{n}'X_{n}\beta _{1}-\frac{1}{n}\beta _{2}'X_{n}'X_{n}\beta _{2}|&\le \frac{2}{n}|(X_{n}'X_{n}\bar{\beta })'\cdot (\beta _{1}-\beta _{2})|\\&\le \frac{2}{n}||X_{n}'X_{n}\bar{\beta }||_{2}\cdot ||\beta _{1}-\beta _{2}||_{2}\\&=2||\frac{1}{n}\sum _{i=1}^{n}x_{i,n}x_{i,n}'\bar{\beta }||_{2}\cdot ||\beta _{1}-\beta _{2}||_{2}\\&\le 2M||\frac{1}{n}\sum _{i=1}^{n}x_{i,n}||_{2}\cdot ||\beta _{1}-\beta _{2}||_{2}, \end{aligned}$$

where the second inequality is from the Cauchy-Schwartz inequality; \(M=\sup _{i,n,\beta }\{|x_{i,n}'\beta |\}<+\infty\). Since \(X_{n}\) is uniformly bounded, so \(2M||\frac{1}{n}\sum _{i=1}^{n}x_{i,n}||_{2}<+\infty\).

Let \(\gamma =(\theta ',\theta ^{+'})'\),

$$\begin{aligned} |\frac{1}{n}\beta _{1}'X_{n}'Z_{n}(\theta _{1}^{+})-\frac{1}{n}\beta _{2}'X_{n}'Z_{n}(\theta _{2}^{+})|&\le \frac{1}{n}|\frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \gamma }|_{\gamma =\bar{\gamma }}\cdot |\gamma _{1}-\gamma _{2}|\\&\le \frac{1}{n}||\frac{\partial [\bar{\beta }'X_{n}'Z_{n}(\bar{\theta }^{+})]}{\partial \gamma }||_{2}\cdot ||\gamma _{1}-\gamma _{2}||_{2}, \end{aligned}$$

where \(\bar{\gamma }\) is between \(\gamma _{1}\) and \(\gamma _{2}\).

$$\begin{aligned} \frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \beta }&=X_{n}'Z_{n}(\theta ^{+})=\sum _{i=1}^{n}x_{i,n}z_{i,n}(\theta ^{+})\\ \frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \rho }&=0\\ \frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \beta ^{+}}&=\sum _{i=1}^{n}x_{i,n}'\beta \cdot \frac{\partial z_{i,n}(\theta ^{+})}{\partial \beta ^{+}}\\ \frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \rho ^{+}}&=\sum _{i=1}^{n}x_{i,n}'\beta \cdot \frac{\partial z_{i,n}(\theta ^{+})}{\partial \rho ^{+}} \end{aligned}$$

Recall \(z_{i,n}(\theta )=x_{i,n}^{*'}\beta +\sigma _{ii,n}\frac{\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}{\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}y_{i,n}-\sigma _{ii,n}\frac{\phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}{1-\Phi (x_{i,n}^{*'}\beta /\sigma _{ii,n})}(1-y_{i,n})\), where \(\sigma _{ii,n}=[(I_{n}-\rho W_{n})^{-1}(I_{n}-\rho W_{n})^{-1'}]_{ii}\). By the compactness of the parameter space and uniform boundedness of \(X_{n}\), and \(\sigma _{ii,n}^{2}=var(y_{i,n}^{*})\) is bounded away from 0, we have \(\sup _{i,n,\theta \in \Theta }||\frac{\partial z_{i,n}(\theta )}{\partial \beta }||_{2}\equiv M_{1}<+\infty\) and \(\sup _{i,n,\theta \in \Theta }|\frac{\partial z_{i,n}(\theta )}{\partial \ \rho }|\equiv M_{2}<+\infty\). Therefore,

$$\begin{aligned} \frac{1}{n}|\frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \beta ^{+}}|\le MM_{1}, \end{aligned}$$

and

$$\begin{aligned} \frac{1}{n}|\frac{\partial [\beta 'X_{n}'Z_{n}(\theta ^{+})]}{\partial \rho ^{+}}| \le MM_{2}. \end{aligned}$$

Then, \(\frac{1}{n}||\frac{\partial [\bar{\beta }'X_{n}'Z_{n}(\bar{\theta }^{+})]}{\partial \gamma }||_{2}<+\infty\), so \(\frac{1}{n}\beta 'X_{n}'Z_{n}(\theta ^{+})\) is stochastically equicontinous. In the similar ways as above, \(\frac{1}{n}\rho \beta 'X_{n}'W_{n}Z_{n}(\theta ^{+})\) is are stochastically equicontinous.

Turning to the term of \(\frac{1}{n}Z_{n}(\theta ^{+})'Z_{n}(\theta ^{+})\),

$$\begin{aligned} |\frac{1}{n}Z_{n}(\theta _{1}^{+})'Z_{n}(\theta _{1}^{+})-\frac{1}{n}Z_{n}(\theta _{2}^{+})'Z_{n}(\theta _{2}^{+})|&=\frac{1}{n}|\sum _{i=1}^{n}[z_{i,n}(\theta _{1}^{+})^{2}-z_{i,n}(\theta _{2}^{+})^{2}]|\\&=\frac{1}{n}|\sum _{i=1}^{n}z_{i,n}(\bar{\theta }^{+})\frac{\partial z_{i,n}(\bar{\theta }^{+})'}{\partial \theta ^{+}}(\theta _{1}^{+}-\theta _{2}^{+})|\\&\le z_{m}\frac{1}{n}\sum _{i=1}^{n}||\frac{\partial z_{i,n}(\bar{\theta }^{+})}{\partial \theta ^{+}}||_{2}||(\theta _{1}^{+}-\theta _{2}^{+})||_{2}, \end{aligned}$$

where \(z_{m}\equiv \sup _{i,n,\theta \in \Theta }z_{i,n}(\theta )<+\infty\). As shown above,

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}||\frac{\partial z_{i,n}(\bar{\theta }^{+})}{\partial \theta ^{+}}||_{2}<+\infty . \end{aligned}$$

Hence, \(\frac{1}{n}Z_{n}(\theta ^{+})'Z_{n}(\theta ^{+})\) is stochastically equicontinous. \(\frac{1}{n}\rho Z_{n}(\theta ^{+})W_{n}Z_{n}(\theta ^{+})\), \(\frac{1}{n}\rho Z_{n}(\theta ^{+})W_{n}'Z_{n}(\theta ^{+})\) and \(\frac{1}{n}\rho Z_{n}(\theta ^{+})W_{n}'W_{n}Z_{n}(\theta ^{+})\) can also be shown to be stochastically equicontinous using similar methods.

Therefore, \(\frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})\) is stochastically equicontinous. And

$$\begin{aligned} \sup _{(\theta ,\theta ^{+})\in \Theta \times \Theta }|\frac{1}{n}\tilde{Q}_{n}(\theta |\theta ^{+})-\tilde{Q}_{\infty }(\theta |\theta ^{+})|=0 \end{aligned}$$

by Theorem 1 in Donald (1992). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W. Consistent EM algorithm for a spatial autoregressive probit model. J Spat Econometrics 3, 4 (2022). https://doi.org/10.1007/s43071-022-00022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43071-022-00022-x

Keywords

JEL Classification

Navigation