Skip to main content
Log in

Common spectral properties and \(\nu \)-convergence

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

In this paper we show that if \(\{T_n\}\) is a sequence of bounded linear operators on a complex Banach space X which \(\nu \)-converges to two different bounded linear operators T and U, then T and U have the same parts of the spectrum. In particular, we generalize the results of Sánchez-Perales and Djordjević (J Math Anal Appl 433:405–415, 2016) and of Ammar (Indag Math 28:424–435, 2017). We also investigate the spectral \(\nu \)-continuity for the surjective spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not available.

References

  1. Abad, O., Zguitti, H.: On the regularity of the class of generalized Drazin–Riesz invertible operators. Filomat 36(14), 4831–4838 (2022)

    Article  MathSciNet  Google Scholar 

  2. Ahues, M.: A class of strongly stable operator approximations. J. Austral. Math. Soc. Ser. B 28, 435–442 (1987)

    Article  MathSciNet  Google Scholar 

  3. Ahues, M., Hocine, F.: A note on spectral approximation of linear operations. Appl. Math. Lett. 7(2), 63–66 (1994)

    Article  MathSciNet  Google Scholar 

  4. Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  5. Aiena, P.: Fredholm and local spectral theory II, With Application to Weyl-type Theorems, Lecture Notes in Mathematics, vol. 2235. Springer, Berlin (2018)

    Google Scholar 

  6. Alam, R.: On spectral approximation of linear operators. J. Math. Anal. Appl. 226, 229–244 (1998)

    Article  MathSciNet  Google Scholar 

  7. Ammar, A.: Some properties of the Wolf and Weyl essential spectra of a sequence of linear operators \(\nu \)-convergent. Indag. Math. 28, 424–435 (2017)

    Article  MathSciNet  Google Scholar 

  8. Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Inc., Englewood (1971). With an appendix by Joel Davis, Prentice-Hall Series in Automatic Computation

  9. Anselone, P.M., Ansorge, R.: Compactness principles in nonlinear operators approximation theory. Numer. Funct. Anal. Optim. 1, 589–618 (1979)

    Article  MathSciNet  Google Scholar 

  10. Anselone, P.M., Treuden, M.L.: Spectral analysis of asymptotically compact operator sequences. Numer. Funct. Anal. Optim. 17, 679–690 (1996)

    Article  MathSciNet  Google Scholar 

  11. Arándiga, F., Caselles, V.: On strongly stable approximations. Rev. Mat. Univ. Complut. Madr. 7(2), 207–217 (1994)

    MathSciNet  Google Scholar 

  12. Berkani, M.: Restriction of an operator to the range of its powers. Stud. Math. 140(2), 163–175 (2000)

    Article  MathSciNet  Google Scholar 

  13. Bouldin, R.: Operator approximations with stable eigenvalues. J. Austral. Math. Soc. 49, 250–257 (1990)

    Article  MathSciNet  Google Scholar 

  14. Chatelin, F.: Spectral Approximation of Linear Operators, Comput. Sci. Appl. Math. Academic Press, Inc. [Har- court Brace Jovanovich, Publishers], New York (1983). With a foreword by P. Henrici, with solutions to exercises by Mario Ahués

  15. Conway, J.B., Morrel, B.B.: Operators that are points of spectral continuity. Integr. Equ. Oper. Theory 2(2), 174–198 (1979)

    Article  MathSciNet  Google Scholar 

  16. Conway, J.B., Morrel, B.B.: Operators that are points of spectral continuity II. Integr. Equ. Oper. Theory 4(4), 459–503 (1981)

    Article  MathSciNet  Google Scholar 

  17. Grabiner, S.: Uniform ascent and descent of bounded operators. J. Math. Soc. Jpn. 34(2), 317–337 (1982)

    Article  MathSciNet  Google Scholar 

  18. Hadji, S., Zguitti, H.: Further common spectral properties of bounded linear operators \(AC\) and \(BD\). Rend. Circ. Mat. Palermo (2) 71(2), 707–723 (2022)

    Article  MathSciNet  Google Scholar 

  19. Koliha, J.J.: A generalized Drazin inverse. Glasgow Math. J. 38(3), 367–381 (1996)

    Article  MathSciNet  Google Scholar 

  20. Kordula, V., Müller, V.: On the axiomatic theory of spectrum. Stud. Math. 119(2), 109–128 (1996)

    MathSciNet  Google Scholar 

  21. Limaye, B.V.: Operator approximation. Springer Proc. Math. Stat. 142, 135–147 (2015)

    Google Scholar 

  22. Mbekhta, M., Müller, V.: On the axiomatic theory of spectrum II. Stud. Math. 119(2), 129–147 (1996)

    Article  MathSciNet  Google Scholar 

  23. Müller, V.: Spectral Theory of Linear Operators: And Spectral Systems in Banach Algebras, vol. 139. Springer Science Business Media, New York (2007)

    Google Scholar 

  24. Newburgh, J.D.: The variation of spectra. Duke Math. J. 18, 165–176 (1951)

    Article  MathSciNet  Google Scholar 

  25. Sánchez-Perales, S., Djordjević, S.V.: Spectral continuity using \(\nu \)-convergence. J. Math. Anal. Appl. 433, 405–415 (2016)

    Article  MathSciNet  Google Scholar 

  26. Schmoeger, C.: Shifts on Banach spaces. Demonstr. Math. 30(1), 115–128 (1997)

    MathSciNet  Google Scholar 

  27. Thamban Nair, M.: On strongly stable approximations. J. Aust. Math. Soc. 52, 251–260 (1992)

    Article  MathSciNet  Google Scholar 

  28. Yan, K., Fang, X.: Common properties of the operator products in spectral theory. Ann. Funct. Anal. 6(4), 60–69 (2015)

    Article  MathSciNet  Google Scholar 

  29. Yan, K., Zeng, Q., Zhu, Y.: On Drazin spectral equation for the operator products. Complex Anal. Oper. Theory 14, 12 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zeng, Q., Zhong, H.: New results on common properties of bounded linear operators \(RS\) and \(SR\). Acta Math. Sin. Engl. Ser. 29(10), 1871–1884 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zguitti, H.: A note on the common spectral properties for bounded linear operators. Filomat 33(14), 4575–4584 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the referee for several helpful remarks and suggestions on a former version of this paper. Namely his suggestions that led to a simplification of the proof of Theorem 3.2 and also his suggestions to add Theorem 3.5 and Corollary 3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Zguitti.

Additional information

Communicated by Miklós Palfia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadji, S., Zguitti, H. Common spectral properties and \(\nu \)-convergence. Banach J. Math. Anal. 18, 39 (2024). https://doi.org/10.1007/s43037-024-00350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-024-00350-0

Keywords

Mathematics Subject Classification

Navigation