Skip to main content
Log in

Further results on the a-numerical range in \(C^*\)-algebras

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathfrak {A}}\) be a unital \(C^*\)-algebra with the unit \(\mathbf{1} \) and \({\mathcal {S}}({\mathfrak {A}})\) be the set of all states on \({\mathfrak {A}}\). For a positive element a of \({\mathfrak {A}}\), let \({\Vert x\Vert }_{a}\), \(v_{a}(x)\), and \(V_{a}(x)\) denote the a-operator semi-norm, the a-numerical radius, and the a-numerical range of \(x\in {\mathfrak {A}}\), respectively. Let \({\mathfrak {A}}^{a}=\left\{ x\in {\mathfrak {A}}: \, \Vert x\Vert _{a} <\infty \right\} \) and \({\mathcal {S}}_{a}({\mathfrak {A}})=\left\{ \frac{f}{f(a)}: f\in {\mathcal {S}}({\mathfrak {A}}),\, f(a)\ne 0\right\} \). Let also \({\mathfrak {A}}_{a}\) be the set of all elements in \({\mathfrak {A}}\) that admit a-adjoints. In this paper, we first characterize an element \(x\in {\mathfrak {A}}\) for which \(|f(ax)|=f(a)\) for every pure state f. Next, we prove that if a linear map \(f: a{\mathfrak {A}}^{a}\longrightarrow \mathbb {C}\) satisfies \(f(a)=1\) and \(|f(ay)|\le {\Vert y\Vert }_{a}\) for all \(y\in {\mathfrak {A}}^{a}\), then there exists \(g\in {\mathcal {S}}_{a}({\mathfrak {A}})\) such that \(f(ay)=g(ay)\) for all \(y\in {\mathfrak {A}}_{a}\). We also show that \(v_{a}(x) = {\Vert x\Vert }_{a}\) if and only if there is \(f\in {\mathcal {S}}_{a}({\mathfrak {A}})\) such that \(\sqrt{f(x^*ax)} = {\Vert x\Vert }_{a}\) and \(|f(ax)| = v_{a}(x)\). In addition, we prove that \({\Vert x\Vert }_{a}<\infty \) if and only if \(v_{a}(x)<\infty \). Finally, we show that \(V_{a}(x)=\bigcap _{\zeta \in \mathbb {C}}D(\zeta , v_{a}(x-\zeta \mathbf{1} ))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias, M.L., Corach, G., Gonzalez, M.C.: Metric properties of projections in semi-Hilbertian spaces. Integr. Eqn. Oper. Theory 62(1), 11–28 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arias, M.L., Corach, G., Gonzalez, M.C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428(7), 1460–1475 (2008)

    Article  MathSciNet  Google Scholar 

  3. Arias, M.L., Corach, G., Gonzalez, M.C.: Lifting properties in operator ranges. Acta Sci. Math. (Szeged) 75(3–4), 635–653 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Baklouti, H., Feki, K., Sid Ahmed, O.A.M.: Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)

    Article  MathSciNet  Google Scholar 

  5. Benzi, M.: Some uses of the field of values in numerical analysis. Boll Unione Mat Ital 14, 159–177 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bonsall, F., Duncan, J.: Numerical ranges II. London Mathematical Society Lecture Note Series, Cambridge University Press (1973)

    Book  Google Scholar 

  7. Bourhim, A., Mabrouk, M.: Numerical radius and product of elements in \(C^*\)-algebras. Linear Multilinear Algebra 65(6), 1108–1116 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bourhim, A., Mabrouk, M.: On maps preserving the numerical radius distance between \(C^*\)-algebras. Complex Anal. Oper. Theory 13(5), 2371–2380 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bourhim, A., Mabrouk, M.: \(a\)-numerical range on \(C^*\)-algebras. Positivity 25, 1489–1510 (2021)

    Article  MathSciNet  Google Scholar 

  10. de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehert and Winston, New York (1966)

    MATH  Google Scholar 

  11. Chan, J.-T.: Numerical radius preserving operators on \(C^*\)-algebras. Arch. Math. 70, 486–488 (1998)

    Article  MathSciNet  Google Scholar 

  12. Chan, J.-T., Chan, K.: An observation about normaloid operators. Oper. Matrices 11(3), 885–890 (2017)

    Article  MathSciNet  Google Scholar 

  13. Feki, K.: Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 11(4), 929–946 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Glimm, J.: A Stone–Weierstrass theorem for \(C^*\)-algebras. Ann. Math. 216–244 (1960)

  15. Goldberg, M., Straus, E.G.: Elementary inclusion relations for generalized numerical ranges. Linear Algebra Appl. 18(1), 1–24 (1977)

    Article  MathSciNet  Google Scholar 

  16. Goldberg, M., Tadmor, E.: On the numerical radius and its applications. Linear Algebra Appl. 42, 263–284 (1982)

    Article  MathSciNet  Google Scholar 

  17. Gustafson, K.-E., Rao, D.-K.-M.: Numerical Range: The Field of Values of Linear Operators and Matrices. Springer, New York (1996)

  18. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras: Elementary theory, Number vol. 1 in Fundamentals of the Theory of Operator Algebras. Amer. Math. Soc. (1997)

  19. Li, C.K.: \(C\)-Numerical ranges and \(C\)-numerical radii. Linear Multilinear Algebra 37, 51–82 (1994)

    Article  MathSciNet  Google Scholar 

  20. Murphy, G.: \(C^*\)-Algebras and Operator Theory, Elsevier Science (1990)

  21. Pedersen, G-K.: Analysis Now, Springer, New York (1989)

    Book  Google Scholar 

  22. Rajić, R.: On the algebra range of an operator on a Hilbert \(C^*\)-module over compact operators. Proc. Am. Math. Soc. 131(10), 3043–3051 (2003)

    Article  MathSciNet  Google Scholar 

  23. Rajić, R.: A generalized \(q\)-numerical range. Math. Commun. 10(1), 31–45 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Roger, A.-H., Johnson, C.-R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York, NY, USA (2012)

    Google Scholar 

  25. Saddi, A.: \(A\)-normal operators in semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 9(1), 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Sakai, S.: \(C^*\)-algebras and\(W^*\)-algebras, Number vol. 60 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, New York (1971)

    Google Scholar 

  27. Stampfli, J.G., Williams, J.P.: Growth conditions and the numerical range in a Banach algebra. Tohoku Math. J. (2) 20(4), 417–424 (1968)

    Article  MathSciNet  Google Scholar 

  28. Williams, J.-P.: Finite operators. Proc. Am. Math. Soc. 26(1), 129–136 (1970)

    Article  MathSciNet  Google Scholar 

  29. Zamani, A.: Characterization of numerical radius parallelism in \(C^*\)-algebras. Positivity 23(2), 397–411 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zamani, A.: Numerical radius in Hilbert \(C^*\)-modules. Math. Inequal. Appl. 24(4), 1017–1030 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their careful reading of the manuscript and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zamani.

Additional information

Communicated by Dilian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmari, A., Mabrouk, M. & Zamani, A. Further results on the a-numerical range in \(C^*\)-algebras. Banach J. Math. Anal. 16, 25 (2022). https://doi.org/10.1007/s43037-022-00181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-022-00181-x

Keywords

Mathematics Subject Classification

Navigation