Skip to main content
Log in

a-Numerical range on \(C^*\)-algebras

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \(\mathfrak {A}\) be a unital \(C^*\)-algebra and \(\mathfrak {A}'\) be its topological dual space. Let a be a positive element in \(\mathfrak {A}\), and set \(\mathscr {S}_a(\mathfrak {A}):= \left\{ f\in \mathfrak {A}': f\ge 0, f(a)=1\right\} .\) The a-numerical range and a-numerical radius of any element \(x\in \mathfrak {A}\) are defined by

$$\begin{aligned} V_a(x):= \left\{ f(ax): f\in \mathscr {S}_a(\mathfrak {A})\right\} , \end{aligned}$$

and

$$\begin{aligned} v_a(x):=\sup \left\{ \left| z\right| :z\in V_a(x)\right\} , \end{aligned}$$

respectively. In this paper, we establish some permanence properties of the a-numerical range and a-numerical radius of elements in \(\mathfrak {A}\). In particular, we investigate when the a-numerical range of an element of \(\mathfrak {A}\) is closed, and provide explicit formulas for the a-numerical radius of the so-called a-hermitian elements of \(\mathfrak {A}\). Furthermore, given a positive operator A on a complex Hilbert space \({\mathscr {H}}\), we study and investigate the relationship between the algebraic and spatial A-numerical ranges of bounded linear operators on \({\mathscr {H}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, M.M., Gorjizadeh, G.: A-numerical radius of a-normal operators in semi-Hilbertian spaces. Ital. J. Pure Appl. Math. 36, 73–78 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Arias, M.-L., Corach, G., Gonzalez, M.-C.: Metric properties of projections in semi-Hilbertian spaces. Integral Equ. Oper. Theory 62(1), 11–28 (2008)

    Article  MathSciNet  Google Scholar 

  3. Arias, M.-L., Corach, G., Gonzalez, M.-C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428(7), 1460–1475 (2008)

    Article  MathSciNet  Google Scholar 

  4. Baklouti, H., Feki, K., Ahmed, O.-A.: Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)

    Article  MathSciNet  Google Scholar 

  5. Berberian, S.-K., Orland, G.-H.: On the closure of the numerical range of an operator. Proc. Am. Math. Soc. 18(3), 499–503 (1967)

    Article  MathSciNet  Google Scholar 

  6. Bonsall, F., Duncan, J.: Numerical ranges II. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  7. Feki, K.: Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 1–18 (2020)

  8. Halmos, P.-R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics. Springer, Berlin (1982)

    Book  Google Scholar 

  9. Hu, S.-A., Tam, T.-Y.: On the generalized numerical range with principal character. Linear Multilinear Algebra 30(1–2), 93–107 (1991)

    Article  MathSciNet  Google Scholar 

  10. Lenferink, H., Spijker, M.: A generalization of the numerical range of a matrix. Linear Algebra Appl. 140, 251–266 (1990)

    Article  MathSciNet  Google Scholar 

  11. Li, C.-K., Mehta, P., Rodman, L.: A generalized numerical range: the range of a constrained sesquilinear form. Linear Multilinear Algebra 37(1–3), 25–49 (1994)

    Article  MathSciNet  Google Scholar 

  12. Lins, B., Spitkovsky, I., Zhong, S.: The normalized numerical range and the Davis-Wielandt shell. Linear Algebra Appl. 546, 187–209 (2018)

    Article  MathSciNet  Google Scholar 

  13. Murphy, G.: C*-algebras and Operator Theory. Elsevier Science, Amsterdam (1990)

    MATH  Google Scholar 

  14. Pearcy, C.: An elementary proof of the power inequality for the numerical radius. Mich. Math. J 13(3), 289–291 (1966)

    Article  MathSciNet  Google Scholar 

  15. Raeburn, I., Williams, D.-P.: Morita Equivalence and Continuous-Trace \(C^\ast \)-algebras. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  16. Roger, A.-H., Johnson, C.-R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2012)

    Google Scholar 

  17. Rynne, B.-P., Youngson, M.-A.: Linear Functional Analysis. Springer, Berlin (2000)

    Book  Google Scholar 

  18. Shapiro, J.-H.: Notes on the Numerical Range. Michigan State University, East Lansing (2004)

    Google Scholar 

  19. Zachlin, P.-F., Hochstenbach, M.-E.: On the numerical range of a matrix. Linear Multilinear Algebra 56(1–2), 185–225 (2008)

    Article  MathSciNet  Google Scholar 

  20. Zamani, A.: Characterization of numerical radius parallelism in \(C^\ast \)-algebras. Positivity 23(2), 397–411 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellatif Bourhim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourhim, A., Mabrouk, M. a-Numerical range on \(C^*\)-algebras. Positivity 25, 1489–1510 (2021). https://doi.org/10.1007/s11117-021-00825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-021-00825-6

Keywords

Mathematics Subject Classification

Navigation