Skip to main content
Log in

On a class of obstacle problem via Young measure in generalized Sobolev space

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

This paper deals with the existence and uniqueness of weak solution for a class of obstacle problem of the form

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}\displaystyle \int _{\Omega }\mathcal {V}(x,Dw):D(\vartheta -w)\mathrm {~d}x+\displaystyle \int _{\Omega }\left\langle w\vert w\vert ^{p(x)-2},\vartheta - w\right\rangle \mathrm {~d}x\\ &{} \quad \ge \displaystyle \int _{\Omega }\mathcal {U}(x,w)(\vartheta -w)\mathrm {~d}x, \\ \;\\ &{} \vartheta \in \Im _{\Lambda , h}, \end{array}\right. } \end{aligned}$$

where \(\Im _{\Lambda , h}\) is a convex set defined below. By using the Young measure theory and Kinderlehrer and Stampacchia Theorem, we prove the existence and uniqueness result of the considered problem in the framework of generalized Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Azroul, E., Balaadich, F.: Weak solutions for obstacle problems with weak monotonicity. Stud. Sci. Math. Hung. 58(2), 171–181 (2021)

    MathSciNet  Google Scholar 

  2. Azroul, E., Balaadich, F.: Weak solutions for generalized \(p\)-Laplacian systems via Young measures. Moroc. J. Pure Appl. Anal. 4(2), 77–84 (2018)

    Article  Google Scholar 

  3. Balder, E.J.: A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22, 570–598 (1984)

    Article  MathSciNet  Google Scholar 

  4. Balder, E.J.: On equivalence of strong and weak convergence in \(I^1\)-spaces under extreme point conditions. Israel J. Math. 75, 21–47 (1991)

    Article  MathSciNet  Google Scholar 

  5. Baroni, P.: Lorentz estimates for obstacle parabolic problems. Nonlinear Anal. 96, 167–188 (2014)

    Article  MathSciNet  Google Scholar 

  6. Byun, S.S., Cho, Y., Wang, L.: Calderon–Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)

    Article  MathSciNet  Google Scholar 

  7. Byun, S.S., Kim, Y.: Elliptic equations with measurable nonlinearities in nonsmooth domains. Adv. Math. 288, 152–200 (2016)

    Article  MathSciNet  Google Scholar 

  8. Challal, S., Lyaghfouri, A., Rodrigues, J.F., Teymurazyan, R.: On the regularity of the free boundary for quasilinear obstacle problems. Interfaces Free Bound. 16(3), 359–394 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  10. Diening, L., Harjulehto, P., Hasto, P., Ruika, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  Google Scholar 

  11. Dolzmann, G., Hungerbühler, N., Muller, S.: Nonlinear elliptic systems with measure valued right hand side. Math. Z. 226, 545–574 (1997)

    Article  MathSciNet  Google Scholar 

  12. Eleuteri, M., Habermann, J.: A H\(\ddot{o}\)lder continuity result for a class of obstacle problems under non standard growth conditions. Math. Nachr. 284, 1404–1434 (2011)

    Article  MathSciNet  Google Scholar 

  13. Eleuteri, M., Habermann, J.: Regularity results for a class of obstacle problems under non standard growth conditions. J. Math. Anal. Appl. 344(2), 1120–1142 (2008)

    Article  MathSciNet  Google Scholar 

  14. Eleuteri, M., Habermann, J.: Calderon–Zygmund type estimates for a class of obstacle problems with p(x) growth. J. Math. Anal. Appl. 372(1), 140–161 (2010)

    Article  MathSciNet  Google Scholar 

  15. Eleuteri, M., Harjulehto, P., Lukkari, T.: Global regularity and stability of solutions to obstacle problems with nonstandard growth. Rev. Mat. Complut. 26(1), 147–181 (2013)

    Article  MathSciNet  Google Scholar 

  16. El Ouaarabi, M., Allalou, C., Melliani, S.: Existence result for Neumann problems with \(p(x)\)-Laplacian-like operators in generalized Sobolev spaces. Rend. Circ. Mat. Palermo II. Ser. 72, 1337–1350 (2023)

    Article  MathSciNet  Google Scholar 

  17. El Ouaarabi, M., Allalou, C., Melliani, S.: Existence of weak solutions for p(x)-Laplacian-like problem with p(x)-Laplacian operator under Neumann boundary condition. São Paulo J. Math. Sci. 17, 1057–1075 (2023)

    Article  MathSciNet  Google Scholar 

  18. El Ouaarabi, M., Allalou, C., Melliani, S.: p(x)-Laplacian-like Neumann problems in variable-exponent Sobolev spaces via topological degree methods. Filomat 36(17), 5973–5984 (2022)

    Article  MathSciNet  Google Scholar 

  19. El Ouaarabi, M., Allalou, C., Melliani, S.: Weak solutions for double phase problem driven by the (p(x), q(x))-Laplacian operator under Dirichlet boundary conditions. Bol. Soc. Paran. Mat. 41, 1–14 (2023)

    MathSciNet  Google Scholar 

  20. Evans, L.C.: Weak convergence methods for nonlinear partial differential equations, vol. 74. American Mathematical Soc., Providence (1990)

    Google Scholar 

  21. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(U)\) and \(W^{m, p(x)}(U)\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  22. Friedman, A.: Variational principles and free boundary problems. In: Pure and Applied Mathematics. Wiley, New York (1982)

    Google Scholar 

  23. Hammar, H.E., Allalou, C., Melliani, S.: On strongly quasilinear degenerate elliptic systems with weak monotonicity and nonlinear physical data. J. Math. Sci. 266(4), 576–592 (2022)

    Article  MathSciNet  Google Scholar 

  24. Harjulehto, P., Hasto, P., Koskenoja, M., Lukkari, T., Marola, N.: An obstacle problem and superharmonic functions with nonstandard growth. Nonlinear Anal. Theory Methods Appl. 67, 3424–3440 (2007)

    Article  MathSciNet  Google Scholar 

  25. Heinonen, J., Kilpelainen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. In: Oxford Mathematical Monographs. Oxford University Press, Oxford (1993)

    Google Scholar 

  26. Hungerbühler, N.: A refinement of Ball’s theorem on Young measures. New York J. Math. 3, 48–53 (1997)

    MathSciNet  Google Scholar 

  27. Kim, Y., Ryu, S.: Elliptic obstacle problems with measurable nonlinearities in non-smooth domains. J. Korean Math. Soc. 56(1), 239–263 (2019)

    MathSciNet  Google Scholar 

  28. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    Google Scholar 

  29. Kováčik, O., Rákosník, J.: On spaces \( L^{p (x)} \) and \( W^{k, p (x)} \). Czech. Math. J. 41(4), 592–618 (1991)

    Article  Google Scholar 

  30. Marcon, D., Rodrigues, J.F., Teymurazyan, R.: Homogenization of obstacle problems in Orlicz–Sobolev spaces. Port. Math. 75, 267–283 (2018)

    Article  MathSciNet  Google Scholar 

  31. Ouaro, S., Traore, S.: Entropy solutions to the obstacle problem for nonlinear elliptic problems with variable exponent and \(L^1\)-data. Pac. J. Optim. 5(1), 127–141 (2009)

    MathSciNet  Google Scholar 

  32. Rodrigues, J.F., Sanchon, M., Urbano, J.M.: The obstacle problem for nonlinear elliptic equations with variable growth and \(L^1\)-data. Monatsch. Math. 154, 303–322 (2008)

    Article  Google Scholar 

  33. Rodrigues, J.F., Teymurazyan, R.: On the two obstacle problem in Orlicz–Sobolev spaces and applications. Complex Var. Elliptic Equ. 56(7–9), 769–787 (2011)

    Article  MathSciNet  Google Scholar 

  34. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Heidelberg (2000)

    Book  Google Scholar 

  35. Scheven, C.: Elliptic obstacle problems with measure data: potentials and low order regularity. Publ. Mat. Barc. 56(2), 327–374 (2012)

    Article  MathSciNet  Google Scholar 

  36. Valadier, M.: Young measures. In: Cellina A (ed) Methods of nonconvex analysis. Lecture Notes in Mathematics, vol. 1446, pp. 152–188. Springer, Berlin (1990)

  37. Valadier, M.: A course on Young measures: workshop on measure theory and real analysis. Grado, September 19–October (1993)

  38. Yongqiang, F.: Weak solution for obstacle problem with variable growth. Nonlinear Anal. Theory Methods Appl. 59(1), 371–383 (2004)

    Article  MathSciNet  Google Scholar 

  39. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    Google Scholar 

  40. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675–710 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Ouaarabi.

Additional information

Communicated by Julio Rossi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allalou, M., El Ouaarabi, M., El Hammar, H. et al. On a class of obstacle problem via Young measure in generalized Sobolev space. Adv. Oper. Theory 9, 48 (2024). https://doi.org/10.1007/s43036-024-00349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43036-024-00349-2

Keywords

Mathematics Subject Classification

Navigation