1 Introduction

For \(-1<\alpha < \infty ,\) the weighted Bergman space \(A_{\alpha }^2({\mathbb{D}})\) is defined by the space of all analytic functions in \(L^2({\mathbb{D}}, {\mathrm{d}}A_{\alpha }),\) where

$$\begin{aligned} {\mathrm{d}}A_{\alpha }(z)=(\alpha +1)(1-|z|^2)^{\alpha }{\mathrm{d}}A(z). \end{aligned}$$

If \(f, \ g \in L^2({\mathbb{D}}, {\mathrm{d}}A_{\alpha }),\) we write

$$\begin{aligned} \langle f, \ g \rangle =\int _{{\mathbb{D}}}f(z) \overline{g(z)}{\mathrm{d}}A_{\alpha }(z) \quad \text{and} \quad \Vert f\Vert =\left( \int _{{\mathbb{D}}}|f(z)|^2{\mathrm{d}}A_{\alpha }(z)\right) ^{\frac{1}{2}}. \end{aligned}$$

The space \(L^2({\mathbb{D}}, {\mathrm{d}}A_{\alpha })\) is a Hilbert space with the above inner product. For any nonnegative integer n and \(z \in {\mathbb{D}},\) let

$$\begin{aligned} e_n(z)=\sqrt{\frac{\Gamma (n+\alpha +2)}{\Gamma (n+1)\Gamma (\alpha +2)}}~z^n, \end{aligned}$$

where \(\Gamma (\cdot )\) is the usual Gamma function. Then \(\{e_n\}\) is an orthonormal basis for the weighted Bergman spaces (cf. [4]). If \(f,g\in A_{\alpha }^2({\mathbb{D}})\) of the form

$$\begin{aligned} f(z)=\sum _{n=0}^{\infty }a_nz^n \quad \text{and} \quad g(z)=\sum _{n=0}^{\infty }b_nz^n, \end{aligned}$$

then, the inner product of f and g is

$$\begin{aligned} \langle f, \ g\rangle =\sum _{n=0}^{\infty }\frac{\Gamma (n+1) \Gamma (\alpha +2)}{\Gamma (n+\alpha +2)}a_n{\overline{b}}_n. \end{aligned}$$
(1.1)

Given a bounded measurable function \(\varphi \in L^{\infty }(\mathbb D),\) the Toeplitz operator \(T_{\varphi }\) with symbol \(\varphi\) on \(A_{\alpha }^2({\mathbb{D}})\) is defined by

$$\begin{aligned} T_{\varphi }g := P({\varphi }\cdot g)\quad (g\in A_{\alpha }^2({\mathbb{D}})) \end{aligned}$$

where P denote the orthogonal projection from \(L^2 ({\mathbb{D}}, {\mathrm{d}}A_{\alpha })\) onto \(A_{\alpha }^2({\mathbb{D}}).\)

For bounded linear operators AB on a Hilbert space, we let \([A,B]:=AB-BA.\) A bounded linear operator T is said to be hyponormal if its selfcommutator \([T^*,T]\) is positive (semidefinite). Hyponormal operators theory is a broad and highly advanced field, that has contributed a lot of problems in operator theory, functional analysis, and mathematical physics. On the Hardy space \(H^2({\mathbb{T}}),\) the hyponormal Toeplitz operators has been researched in [1, 2, 5]. In [1], the author characterized the hyponormality of \(T_{\varphi }\) on \(H^2({{\mathbb{T}}})\) by using the properties of the symbol \(\varphi \in L^\infty ({\mathbb{T}})\) as follows.

Cowen’sTheorem

[1] For \(\varphi \in L^{\infty }({\mathbb{T}}),\) let

$$\begin{aligned} {{\mathcal {E}}}(\varphi ):=\{k\in H^{\infty }:\Vert k\Vert _{\infty }\le 1 \quad \text{and}\quad \varphi -k{{\overline{\varphi }}}\in H^{\infty }({\mathbb{T}})\}. \end{aligned}$$

Then \(T_{\varphi }\) is hyponormal if and only if \({\mathcal {E}}(\varphi )\) is nonempty.

The main idea of the proof of Cowen’s Theorem is a dilation theorem as in [14]. However, the Cowen’s theorem cannot be utilized to \(A_{\alpha }^2({\mathbb{D}}).\) So, for the weighted Bergman space, determining the hyponormality of Toeplitz operators is very difficult. In fact, there seems to be very little study of hyponormal Toeplitz operators on \(A_{\alpha }^2(\mathbb D)\) in the literature. In [7, 8, 10, 11, 13], the authors characterized the hyponormality of Toeplitz operators \(T_{\varphi },\) in terms of the coefficient of the symbol \(\varphi\) under certain assumptions on \(A_{\alpha }^2({\mathbb{D}}).\) Moreover, since the hyponormality of Toeplitz operators on \(A_{\alpha }^2({\mathbb{D}})\) is translation invariant, we can assume that the constant term is zero. By the definition and properties of Toeplitz operators, we have that for \(g, h\in L^{\infty }(\mathbb D)\) and \(\alpha ,\beta \in {\mathbb C},\) we have that \(T_{\alpha g+\beta h}=\alpha T_g+\beta T_h,\) \(T_g^{*}=T_{{\overline{g}}},\) and \(T_{{\overline{g}}}T_h=T_{{\overline{g}}h}\) if g or h is analytic.

We briefly summarize the results relating to the hyponormality of Toeplitz operator with non-harmonic symbols on the Bergman space, which have been recently obtained in [3, 9, 15]. In [15], the author provide a necessary condition on the complex constant C for the operator \(T_{z^n+C|z|^s}\) to be hyponormal on the Bergman space, and after that, in [12], hyponormality of Toeplitz operator \(T_{z^n+C|z|^s}\) is characterized on the weighted bergman spaces. In [3], the authors consider the sufficient conditions of hyponormality of \(T_{f+g}\) on the Bergman space where \(f(z)=a_{m,n}z^m{\overline{z}}^n \ (m>n)\) and \(g(z)=a_{i,j}z^i{\overline{z}}^j \ (i>j)\) with \(m-n>i-j.\) Recently, the authors as in [9] characterized the necessary conditions for the hyponormality of Toeplitz operators \(T_{\varphi }\) on the Bergman space where \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t \ (m\ge n,\ t\ge s)\) with \(m\ne t\) and \(m-n=t-s.\)

In this paper, we consider the hyponormality of Toeplitz operators when \(\varphi\) is bivariate polynomials in z and \({\overline{z}}\) acting on the weighted Bergman space \(A_{\alpha }^2({\mathbb{D}}).\) First, we briefly recall some basic consequences of the hyponormality of Toeplitz operators on \(A^2_{\alpha }({\mathbb{D}}).\) Next, we study either necessary or sufficient condition for the hyponormality of Toeplitz operators \(T_{\varphi }\) with non-harmonic symbols \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t\) on the weighted Bergman space.

2 Main results

Firstly, we need the following lemmas for our program. We recall the properties of projection and norm on \(A^2_{\alpha }({\mathbb{D}}).\)

Lemma 2.1

[7] For any nonnegative integers st

$$\begin{aligned} P({\overline{z}}^t z^s)=\left\{ \begin{array}{ll} \frac{\Gamma (s+1)\Gamma (s-t+\alpha +2)}{\Gamma (s+\alpha +2)\Gamma (s-t+1)} z^{s-t} &{}\quad \text{if} \ s \ge t \\ 0 &{}\quad \text{if} \ s < t. \end{array}\right. \end{aligned}$$

Notation 2.2

For our convenience, we shall use the following notations.

$$\begin{aligned} \Lambda _{\alpha }(s)=\frac{\Gamma (s+1)\Gamma (\alpha +2)}{\Gamma (s+\alpha +2)} \quad \text{and} \quad \Lambda _{\alpha }(s,t)=\frac{\Gamma (s+1)^2\Gamma (s-t+\alpha +2)\Gamma (\alpha +2)}{\Gamma (s+\alpha +2)^2 \Gamma (s-t+1)}. \end{aligned}$$

Set \(k_i(z):=\sum _{i=0}^{\infty }c_iz^i \in L^2({\mathbb{D}}, {\mathrm{d}}A_{\alpha }).\) By using the Lemma 2.1 and the relation (1.1), we have the results.

Lemma 2.3

[7] For any nonnegative mwe deduce that

  1. (i)

    \({\Vert {\overline{z}}^m k_i(z)\Vert ^2 =\sum _{i=0}^{\infty }\Lambda _{\alpha }(i+m)|c_{i}|^2},\)

  2. (ii)

    \({\Vert P({\overline{z}}^m k_i(z) )\Vert ^2}=\left\{ \begin{array}{ll} \sum _{i=0}^{\infty }\Lambda _{\alpha }(i,m)|c_{i}|^2 &{}\quad \text{if}\ m \le i \\ \sum _{i=1}^{\infty }\Lambda _{\alpha }(i,m)|c_{i}|^2 &{}\quad \text{if}\ m > i. \end{array}\right.\)

Next, we deal with the hyponormality of Toeplitz operators with non-harmonic symbols \(\varphi (z)\) on \(A^2_{\alpha }({\mathbb{D}}).\) In particular, \(\varphi (z)\) be a bivariate polynomials in z and \({\overline{z}}\) of the form \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t.\) Many researchers have used the Proposition 1.1 as in [6] to consider the hyponormality of \(T_{\varphi }.\) However, in the case of Toeplitz operators \(T_{\varphi }\) with non-harmonic symbols \({\varphi },\) we cannot apply the well-known consequences of Proposition 1.1 as in [6], since the symbol \(\varphi\) cannot separated into analytic and coanalytic parts. So, we have to find the self-commutator of \(T_{\varphi }\) directly. First, we will consider some of the relation introduced in Notation 2.2.

Lemma 2.4

Let mnst are any nonnegative integers.

  1. (i)

    If \(i\ge m-n,\) then \(\Lambda _{\alpha }(m+i,n)\ge \Lambda _{\alpha }(n+i,m).\)

  2. (ii)

    If \(i\ge m-n=s-t>0,\) then

    $$\begin{aligned} \frac{\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(m-n+i)}\ge \frac{\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(n-m+i)}. \end{aligned}$$
    (2.1)
  3. (iii)

    For \(0 \le i<m-n=t-s,\) if \(t>m,\) then \(\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}\) is increasing in iand if \(t<m,\) then \(\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}\) is decreasing in i.

Proof

(i) Let \(m\ge n.\) For \(\ell =1,2,\ldots , m-n,\) by calculating the inequality, we have that

$$\begin{aligned} (i+n+\ell )(i+n-m+\ell +\alpha +1)\ge (i+n-m+\ell )(i+n+\ell +\alpha +1) \end{aligned}$$

for \(i\ge m-n\) and so

$$\begin{aligned} \prod _{\ell =1}^{m-n}(i+n+\ell )(i+n-m+\ell +\alpha +1)\ge \prod _{\ell =1}^{m-n}(i+n-m+\ell )(i+n+\ell +\alpha +1) \end{aligned}$$
(2.2)

for \(i\ge m-n.\) Similarly, for \(\ell =1,2,\ldots , m-n,\) we get that

$$\begin{aligned} (i+n+\ell )(i+\ell +\alpha +1)\ge (i+\ell )(i+n+\ell +\alpha +1) \end{aligned}$$

for \(i\ge m-n\) and so

$$\begin{aligned} \prod _{\ell =1}^{m-n}(i+n+\ell )(i+\ell +\alpha +1)\ge \prod _{\ell =1}^{m-n}(i+\ell )(i+n+\ell +\alpha +1) \end{aligned}$$
(2.3)

for \(i\ge m-n.\) From the relations (2.2) and (2.3), we deduced that

$$\begin{aligned}&\prod _{\ell =1}^{m-n}(i+n+\ell )^2(i+n-m+\ell +\alpha +1)(i+\ell +\alpha +1) \\ &\quad \ge \prod _{\ell =1}^{m-n}(i+\ell )(i+n-m+\ell )(i+n+\ell +\alpha +1)^2. \end{aligned}$$

Since

$$\begin{aligned}&\prod _{\ell =1}^{m-n}(i+n+\ell )^2(i+n-m+\ell +\alpha +1)(i+\ell +\alpha +1)\\ &\quad =\frac{\Gamma (m+i+1)^2\Gamma (i+m-n+\alpha +2)}{\Gamma (n+i+1)^2\Gamma (i+n-m+\alpha +2)} \end{aligned}$$

and

$$\begin{aligned}&\prod _{\ell =1}^{m-n}(i+\ell )(i+n-m+\ell )(i+n+\ell +\alpha +1)^2\\ &\quad =\frac{\Gamma (m-n+i+1)\Gamma (i+m+\alpha +2)^2}{\Gamma (i+n-m+1)\Gamma (i+n+\alpha +2)^2}, \end{aligned}$$

we have

$$\begin{aligned} \Lambda _{\alpha }(m+i,n)\ge \Lambda _{\alpha }(n+i,m) \end{aligned}$$

for \(i\ge m-n.\)

(ii) By Notation 2.2, the desired inequality is equivalent to the inequality

$$\begin{aligned}&\frac{\Gamma {(m+i+1)}\Gamma {(s+i+1)}\Gamma {(m-n+i+\alpha +2)}}{\Gamma {(m+i+\alpha +2)}\Gamma {(s+i+\alpha +2)}\Gamma {(m-n+i+1)}}\\ &\quad \ge \frac{\Gamma {(n+i+1)}\Gamma {(t+i+1)}\Gamma {(n-m+i+\alpha +2)}}{\Gamma {(n+i+\alpha +2)}\Gamma {(t+i+\alpha +2)}\Gamma {(n-m+i+1)}}, \end{aligned}$$

for \(i\ge m-n.\) This is equivalent to

$$\begin{aligned}&\frac{\Gamma {(m+i+1)}\Gamma {(s+i+1)}\Gamma {(m-n+i+\alpha +2)}}{\Gamma {(n+i+1)}\Gamma {(t+i+1)}\Gamma {(n-m+i+\alpha +2)}}\\ &\quad \ge \frac{\Gamma {(m+i+\alpha +2)}\Gamma {(s+i+\alpha +2)} \Gamma {(m-n+i+1)}}{\Gamma {(n+i+\alpha +2)}\Gamma {(t+i+\alpha +2)}\Gamma {(n-m+i+1)}}. \end{aligned}$$

Using properties of the Gamma function and the fact \(m-n=s-t,\) this last inequality is equivalent to

$$\begin{aligned}&\prod _{\ell =1}^{m-n}(n+i+\ell )(t+i+\ell )(n-m+i+\ell +\alpha +1)(i+\ell +\alpha +1)\\ &\quad \ge \prod _{\ell =1}^{m-n}(n+i+\ell +\alpha +1)(t+i+\ell +\alpha +1)(n-m+i+\ell )(i+\ell ). \end{aligned}$$

For each \(i\ge m-n,\) we claim that

$$\begin{aligned} {}&(n+i+\ell )(t+i+\ell )(n-m+i+\ell +\alpha +1)(i+\ell +\alpha +1) \\ &\quad \ge (n+i+\ell +\alpha +1)(t+i+\ell +\alpha +1)(n-m+i+\ell )(i+\ell ). \end{aligned}$$
(2.4)

By simple calculations, we have

$$\begin{aligned}&(n+i+\ell )(t+i+\ell )(n-m+i+\ell +\alpha +1)(i+\ell +\alpha +1)\\ &\qquad - (n+i+\ell +\alpha +1)(t+i+\ell +\alpha +1)(n-m+i+\ell )(i+\ell )\\ &\quad =(\alpha +1)^2\{(n+i+\ell )(t+i+\ell )-(i+\ell )(n-m+i+\ell )\}\\ &\qquad +(\alpha +1)\{(n+i+\ell )(t+i+\ell )(n-m+i+\ell )+(i+\ell )(n+i+\ell )(t+i+\ell )\}\\ &\qquad -(\alpha +1)\{(i+\ell )(t+i+\ell )(n-m+i+\ell )+(n+i+\ell )(n-m+i+\ell )(i+\ell )\}\\ &\quad =(\alpha +1)^2\{(m+t)(i+\ell )+nt\}\\ &\qquad +(\alpha +1)\{(m+t)(i+\ell )^2+2nt(i+\ell )+nt(n-m)\}. \end{aligned}$$

Since \(\alpha +1>0,\) inequality (2.4) equivalent to

$$\begin{aligned} (\alpha +1)\{(m+t)(i+\ell )+nt\}+\{(m+t)(i+\ell )^2+2nt(i+\ell )+nt(n-m)\}\ge 0, \end{aligned}$$
(2.5)

or equivalently

$$\begin{aligned} (\alpha +1)\ge -\frac{(m+t)(i+\ell )^2+(2nt)(i+\ell )+nt(n-m)}{(m+t)(i+\ell )+nt}. \end{aligned}$$

Set \(i+\ell =x\) and

$$\begin{aligned} f(x)=-\frac{(m+t)x^2+2ntx+nt(n-m)}{(m+t)x+nt} \quad \quad (x\ge m-n). \end{aligned}$$

So that

$$\begin{aligned} f'(x)=-\frac{(m+t)^2x^2+2nt(m+t)x+nt(m-n)(m+t)+2n^2t^2}{\{(m+t)x+nt\}^2} \end{aligned}$$

for \(x\ge m-n.\) Thus f(x) is decreasing for all \(x\ge m-n.\) Furthermore, f(x) has a maximum at \(x=m-n,\) so

$$\begin{aligned} f(m-n)=-\frac{(m+t)(m-n)^2+nt(m-n)}{(m+t)(m-n)+nt}<0, \end{aligned}$$

since \((\alpha +1)>0\ge f(x)\) for all \(x\ge m-n,\) and hence (2.5) holds.

(iii) For \(0 \le i<m-n=t-s,\)

$$\begin{aligned} \frac{\Lambda _{\alpha }(t+i+1,s)}{\Lambda _{\alpha }(m+i+1,n)}&=\frac{\Gamma (m+i+\alpha +3)^2\Gamma (t+i+2)^2}{\Gamma (t+i+\alpha +3)^2\Gamma (m+i+2)^2}\\ &=\frac{\Gamma (m+i+\alpha +2)^2\Gamma (t+i+1)^2}{\Gamma (t+i+\alpha +2)^2\Gamma (m+i+1)^2}\cdot \frac{(m+i+\alpha +2)^2(t+i+1)^2}{(t+i+\alpha +2)^2(m+i+1)^2}_. \end{aligned}$$

If \(t>m,\) then by the simple calculations, we have that \(\frac{m+i+\alpha +2}{m+i+1}>\frac{t+i+\alpha +2}{t+i+1}\) and hence

$$\begin{aligned} \frac{\Lambda _{\alpha }(t+i+1,s)}{\Lambda _{\alpha }(m+i+1,n)}>\frac{\Gamma (m+i+\alpha +2)^2 \Gamma (t+i+1)^2}{\Gamma (t+i+\alpha +2)^2\Gamma (m+i+1)^2}= \frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}. \end{aligned}$$

Therefore, \(\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}\) is increasing in i. By the similar arguments, if \(t<m,\) \(\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}\) is decreasing in i. \(\square\)

In the next theorem, we study the case where the symbol \(\varphi\) is of the form \(\varphi (z)=a_{m,n}z^m{\overline{z}}^n\) with \(a_{m,n}\in \mathbb C.\)

Theorem 2.5

If \(\varphi (z)= a_{m,n}z^m{\overline{z}}^n\) with \(a_{m,n}\in \mathbb C,\) then, \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal if and only if \(m\ge n.\)

Proof

For \(\varphi (z)= a_{m,n}z^m{\overline{z}}^n,\) then \(T_{\varphi }\) is hyponormal if and only if

$$\begin{aligned} \left\langle (T_{ \varphi }^* T_{\varphi } -T_{\varphi } T_{\varphi }^*) \sum _{i=0}^{\infty }c_iz^i , \sum _{i=0}^{\infty }c_iz^i\right\rangle \ge 0 \end{aligned}$$
(2.6)

for all \(c_i \in \mathbb C.\) Without loss of generality, we assume that \(a_{m,n}=1.\) By using Lemma 2.3, we have that

$$\begin{aligned}&\left\| T_{\varphi } \sum _{i=0}^{\infty }c_iz^i\right\| ^2-\left\| T_{\varphi }^* \sum _{i=0}^{\infty }c_iz^i\right\| ^2 \\ &\quad =\left\| T_{a_{m,n}z^m{\overline{z}}^n} \sum _{i=0}^{\infty }c_iz^i\right\| ^2-\left\| T_{{\overline{a}}_{m,n}{\overline{z}}^mz^n} \sum _{i=0}^{\infty }c_iz^i\right\| ^2 \\ &\quad =\left\| P\left( {a_{m,n}z^m{\overline{z}}^n} \sum _{i=0}^{\infty }c_iz^i\right) \right\| ^2-\left\| P\left( {\overline{a}}_{m,n}{\overline{z}}^mz^n \sum _{i=0}^{\infty }c_iz^i\right) \right\| ^2 \\ &\quad =\sum _{i=0}^{\infty }\Lambda _{\alpha }(m+i,n)|c_{i}|^2 -\sum _{i=m-n}^{\infty }\Lambda _{\alpha }(n+i,m)|c_{i}|^2\ge 0. \end{aligned}$$
(2.7)

If \(m\ge n,\) by Lemma 2.4(i), we deduced that

$$\begin{aligned} \Lambda _{\alpha }(m+i,n)\ge \Lambda _{\alpha }(n+i,m) \end{aligned}$$

for \(i\ge m-n,\) and so the relation (2.7) holds. Hence \(T_{\varphi }\) is hyponormal. If \(m<n,\) then \(T_{\varphi }\) is the adjoint of a hyponormal operator and thus the self-commutators \([T_{\varphi }^*,T_{\varphi }]\) is negative (semidefinite), so \(T_{\varphi }\) is never hyponormal. This completes the proof. \(\square\)

Combined with Theorem 2.5, we can generalize to the following corollary:

Corollary 2.6

If \(\varphi (z)= az^m{\overline{z}}^n+bz^n{\overline{z}}^m\) with \(m>n,\) then, \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal if and only if \(|a|\ge |b|.\)

Proof

By the properties of Toeplitz operators, for \(h\in A^2_{\alpha }(\mathbb D),\) the inequality

$$\begin{aligned} \Vert {T_{\varphi }h}\Vert =\Vert aT_{z^m{\overline{z}}^n}h + bT_{z^m{\overline{z}}^n}^*h\Vert ^2 \ge \Vert {\overline{a}}T_{z^m{\overline{z}}^n}^*h +{\overline{b}}T_{z^m{\overline{z}}^n}h\Vert ^2=\Vert T_{\varphi }^*h\Vert \end{aligned}$$

is equivalent to

$$\begin{aligned} (|a|^2 - |b|^2)(\Vert {T_{z^m{\overline{z}}^n}h}\Vert ^2 - \Vert {T_{z^m{\overline{z}}^n}^*h}\Vert ^2) \ge 0. \end{aligned}$$

By the Theorem 2.5, \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal if and only if \(|a|\ge |b|.\) \(\square\)

2.1 Sufficient condition for hyponormal Toeplitz operators

Now, we consider the sufficient condition for hyponormal Toeplitz operators \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) where the symbols is of the form \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t\) under certain assumptions about the coefficients and degree of \(\varphi (z).\)

Theorem 2.7

For any \(a,b\in \mathbb C\) and nonnegative integers mnstif \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t\) with \(m-n=s-t \ge 0\) and Re\((a{\overline{b}})>0,\) then \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal.

Proof

For \(\varphi (z)= az^m{\overline{z}}^n+bz^s{\overline{z}}^t,\) \(T_{\varphi }\) is hyponormal if and only if

$$\begin{aligned} \left\langle (T_{ \varphi }^* T_{\varphi } -T_{\varphi } T_{\varphi }^*) \sum _{i=0}^{\infty }c_iz^i , \sum _{i=0}^{\infty }c_iz^i\right\rangle \ge 0 \end{aligned}$$

for any \(c_i \in \mathbb C.\) We get that

$$\begin{aligned}&\left\| T_{\varphi } \sum _{i=0}^{\infty }c_iz^i\right\| ^2-\left\| T_{\varphi }^* \sum _{i=0}^{\infty }c_iz^i\right\| ^2\\ &\quad =\left\| P\left( a{\overline{z}}^n\sum _{i=0}^{\infty }c_iz^{i+m}\right) +P\left( b{\overline{z}}^t\sum _{i=0}^{\infty }c_iz^{i+s}\right) \right\| ^2\\ &\qquad -\left\| P\left( {\overline{a}}{\overline{z}}^m\sum _{i=0}^{\infty } c_iz^{i+n}\right) +P\left( {\overline{b}}{\overline{z}}^s\sum _{i=0} ^{\infty }c_iz^{i+t}\right) \right\| ^2. \end{aligned}$$

We let a notation \(P(a,n,m):=P(a{\bar{z}}^n\sum _{i=0}^{\infty }c_{i}z^{m+i})\) and assume that \(c_k=0\) when \(k\le 0.\) Then

$$\begin{aligned} P(a,n,m)= & {} P\left( a{\overline{z}}^n\sum _{i=m}^{\infty }c_{-m+i}z^{i}\right) = \sum _{i=m}^{\infty }\frac{\Lambda _{\alpha }(i)}{\Lambda _{\alpha }(i-n)}ac_{-m+i}z^{i-n}\\= & {} \sum _{i=m-n}^{\infty }\frac{\Lambda _{\alpha }(n+i)}{\Lambda _{\alpha }(i)}ac_{n-m+i}z^{i}. \end{aligned}$$

Thus

$$\begin{aligned} \langle P(a,n,m),P(b,t,s)\rangle =\sum _{i=\max \{m-n,s-t\}}^{\infty }\frac{\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(i)}a{\overline{b}}c_{n-m+i}{\overline{c}}_{t-s+i}. \end{aligned}$$

Similarly, we get

$$\begin{aligned} \langle P({\overline{a}},m,n),P({\overline{b}},s,t) \rangle =\sum _{i=0}^{\infty } \frac{\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(i)}{\overline{a}}bc_{m-n+i}{\overline{c}}_{s-t+i}. \end{aligned}$$

Thus

$$\begin{aligned} {}&\left\| T_{\varphi } \sum _{i=0}^{\infty }c_iz^i\right\| ^2-\left\| T_{\varphi }^* \sum _{i=0}^{\infty }c_iz^i\right\| ^2 \\ &\quad =\Vert P(a,n,m)+P(b,t,s)\Vert ^2 -\Vert P({\overline{a}},m,n)+P({\overline{b}},s,t)\Vert ^2 \\ &\quad =\Vert P(a,n,m)\Vert ^2+\Vert P(b,t,s)\Vert ^2+2\text{Re}\langle P(a,n,m),P(b,t,s)\rangle \\ &\qquad -\Vert P({\overline{a}},m,n)\Vert ^2-\Vert P({\overline{b}},s,t)\Vert ^2-2\text{Re}\langle P({\overline{a}},m,n),P({\overline{b}},s,t)\rangle \\ &\quad =|a|^2\sum _{i=0}^{\infty }\Lambda _{\alpha }(m+i,n)|c_i|^2+|b|^2\sum _{i=0}^{\infty }\Lambda _{\alpha }(s+i,t)|c_i|^2 \\ &\qquad +\sum _{i=\max \{m-n, s-t\}}^{\infty }\frac{2\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(i)} \text{Re}(a{\overline{b}}c_{n-m+i}{\overline{c}}_{t-s+i}) \\ &\qquad -|a|^2\sum _{i=m-n}^{\infty }\Lambda _{\alpha }(n+i,m) |c_i|^2-|b|^2\sum _{i=s-t}^{\infty }\Lambda _{\alpha }(t+i,s)|c_i|^2 \\ &\qquad -\sum _{i=0}^{\infty }\frac{2\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(i)} \text{Re}({\overline{a}}b{\overline{c}}_{m-n+i}c_{s-t+i}). \end{aligned}$$
(2.8)

By Lemma 2.4(i),

$$\begin{aligned} \Lambda _{\alpha }(n+i,m)\le \Lambda _{\alpha }(m+i,n) \end{aligned}$$

for \(i\ge m-n\) and

$$\begin{aligned} \Lambda _{\alpha }(t+i,s)\le \Lambda _{\alpha }(s+i,t) \end{aligned}$$

for \(i\ge s-t.\) So we have

$$\begin{aligned}&|a|^2\sum _{i=0}^{\infty }\Lambda _{\alpha }(m+i,n)|c_i|^2+|b|^2 \sum _{i=0}^{\infty }\Lambda _{\alpha }(s+i,t)|c_i|^2\\ &\quad -|a|^2\sum _{i=m-n}^{\infty }\Lambda _{\alpha }(n+i,m)|c_i|^2 -|b|^2\sum _{i=s-t}^{\infty }\Lambda _{\alpha }(t+i,s)|c_i|^2 \ge 0. \end{aligned}$$

Now we consider the term of

$$\begin{aligned}&\sum _{i=\max \{m-n, s-t\}}^{\infty }\frac{2\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(i)}\text{Re}(a{\overline{b}}c_{n-m+i}{\overline{c}}_{t-s+i})\\ &\qquad -\sum _{i=0}^{\infty }\frac{2\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(i)} \text{Re}({\overline{a}}b{\overline{c}}_{m-n+i}c_{s-t+i}). \end{aligned}$$

Using the condition \(m-n=s-t\) then we have

$$\begin{aligned}&\sum _{i=m-n}^{\infty }\frac{2\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(i)}\text{Re}(a{\overline{b}} |c_{n-m+i}|^2)-\sum _{i=0}^{\infty }\frac{2\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(i)} \text{Re}({\overline{a}}b|c_{m-n+i}|^2)\\ &\quad =\sum _{i=0}^{\infty }\frac{2\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(m-n+i)}\text{Re}(a{\overline{b}} |c_{i}|^2) -\sum _{i=m-n}^{\infty }\frac{2\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(n-m+i)} \text{Re}({\overline{a}}b|c_{i}|^2). \end{aligned}$$

By Lemma 2.4(ii), we have that for \(i\ge m-n,\)

$$\begin{aligned} \frac{\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(m-n+i)}\ge \frac{\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(n-m+i)}. \end{aligned}$$

Therefore \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal. This completes the proof. \(\square\)

Example

If \(\varphi (z)=iz^2{\overline{z}}+(2+i)z^3{\overline{z}}^2,\) then, by Theorem 2.7, \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal.

In [3], showed that the sufficient conditions for the hyponormality of Toeplitz operators with nonharmonic symbols of fixed related degrees on the Bergman space. The following Example generalizes the result of [3, Theorem 12] to the space \(A_{\alpha }^2(\mathbb D).\)

Example

Let \(\varphi (z)=r_1e^{i \theta _1}z^m{\overline{z}}^n+r_2e^{i \theta _2}z^s{\overline{z}}^t\) with \(m-n=s-t \ge 0.\) If \(|\theta _1-\theta _2|<\frac{\pi }{2}\) then \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal.

2.2 Necessary condition for hyponormal Toeplitz operators

Now, we consider some necessary conditions for hyponormality of \(T_{\varphi }\) with more general symbol of the form \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t\) with \(m\ge n\) and \(t\ge s.\)

Theorem 2.8

Let \(\varphi (z)=az^m{\overline{z}}^n+bz^s{\overline{z}}^t\) with \(m\ge n, t\ge s\) and \(a, b\in \mathbb C.\) If \(m-n=t-s\) and \(m\ne t,\) \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is hyponormal then

$$\begin{aligned} \left\{ \begin{array}{ll} |a|^2\ge \max \left\{ \frac{\Lambda _{\alpha }(2t-s-1,s)}{\Lambda _{\alpha }(2m-n-1,n)}, W(m,n,t,s)\right\} |b|^2&{}\quad \text{if}\ t> m\\ |a|^2\ge \max \left\{ \frac{\Lambda _{\alpha }(t,s)}{\Lambda _{\alpha }(m,n)}, W(m,n,t,s)\right\} |b|^2&{}\quad \text{if}\ t<m, \end{array}\right. \end{aligned}$$

where \(W(m,n,t,s)=\max _{i\in [m-n,\infty )}\frac{\Lambda _{\alpha }(t+i,s)- \Lambda _{\alpha }(s+i,t)}{\Lambda _{\alpha }(m+i,n)-\Lambda _{\alpha }(n+i,m)}.\)

Proof

By a similar argument to the proof of Theorem 2.7, \(T_{\varphi }\) is hyponormal if and only if

$$\begin{aligned}&\left\| T_{\varphi } \sum _{i=0}^{\infty }c_iz^i\right\| ^2-\left\| T_{\varphi }^* \sum _{i=0}^{\infty }c_iz^i\right\| ^2 \\ &\quad =|a|^2\sum _{i=0}^{\infty }\Lambda _{\alpha }(m+i,n)|c_i|^2 +|b|^2\sum _{i=m-n}^{\infty }\Lambda _{\alpha }(s+i,t)|c_i|^2 \\ &\qquad -|a|^2\sum _{i=m-n}^{\infty }\Lambda _{\alpha }(n+i,m) |c_i|^2-|b|^2\sum _{i=0}^{\infty }\Lambda _{\alpha }(t+i,s)|c_i|^2 \\ &\qquad +\sum _{i=m-n}^{\infty }\frac{2\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(i)} \text{Re}(a{\overline{b}}c_{n-m+i}{\overline{c}}_{t-s+i}) \\ &\qquad -\sum _{i=t-s}^{\infty }\frac{2\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(i)} \text{Re}({\overline{a}}b{\overline{c}}_{m-n+i}c_{s-t+i})\ge 0, \end{aligned}$$
(2.9)

for any \(c_i\in \mathbb C.\) Since \(m-n=t-s\) and \(m\ne t,\) from (2.9), \(T_{\varphi }\) is hyponormal if and only if

$$\begin{aligned}&|a|^2\left\{ \sum _{i=0}^{\infty }\Lambda _{\alpha }(m+i,n)|c_i|^2- \sum _{i=m-n}^{\infty }\Lambda _{\alpha }(n+i,m)|c_i|^2\right\} \\ &\quad \ge |b|^2\left\{ \sum _{i=0}^{\infty }\Lambda _{\alpha } (t+i,s)|c_i|^2-\sum _{i=m-n}^{\infty }\Lambda _{\alpha }(s+i,t)|c_i|^2\right\} \\ &\qquad +\sum _{i=m-n}^{\infty }\frac{2\Lambda _{\alpha }(m+i)\Lambda _{\alpha }(s+i)}{\Lambda _{\alpha }(i)} \text{Re}({\overline{a}}bc_{n-m+i}{\overline{c}}_{m-n+i}) \\ &\qquad -\sum _{i=m-n}^{\infty }\frac{2\Lambda _{\alpha }(n+i)\Lambda _{\alpha }(t+i)}{\Lambda _{\alpha }(i)} \text{Re}(a{\overline{b}}{\overline{c}}_{m-n+i}c_{n-m+i}) \end{aligned}$$
(2.10)

for all \(c_i\in \mathbb C \ (i=0,1,2,\ldots ).\) Since \(c_i\) are arbitrary, set \(\text{Re}(a{\overline{b}}{\overline{c}}_{m-n+i}c_{n-m+i})=\text{Re}({\overline{a}}bc_{n-m+i}{\overline{c}}_{m-n+i})=0\) for any \(i \ge m-n.\) If \(0 \le i<m-n\) then (2.10) implies

$$\begin{aligned} |a|^2\ge \max _{0\le i<m-n}\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}|b|^2. \end{aligned}$$

We can think of it in two cases. If \(t>m,\) then by Lemma 2.4(iii), \(\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}\) is increasing in i,  and hence

$$\begin{aligned} |a|^2 \ge \frac{\Lambda _{\alpha }(2t-s-1,s)}{\Lambda _{\alpha }(2m-n-1,n)}|b|^2. \end{aligned}$$

If \(t<m,\) then by Lemma 2.4(iii), \(\frac{\Lambda _{\alpha }(t+i,s)}{\Lambda _{\alpha }(m+i,n)}\) is decreasing in i,  and so

$$\begin{aligned} |a|^2 \ge \frac{\Lambda _{\alpha }(t,s)}{\Lambda _{\alpha }(m,n)}|b|^2. \end{aligned}$$

For \(i\ge m-n\) with \({\overline{c}}_{m-n+i}c_{n-m+i}=0,\)

$$\begin{aligned} |a|^2\ge \max _{ i\in [m-n,\infty )}\frac{\Lambda _{\alpha }(t+i,s)- \Lambda _{\alpha }(s+i,t)}{\Lambda _{\alpha }(m+i,n)-\Lambda _{\alpha }(n+i,m)}|b|^2. \end{aligned}$$

Therefore, if \(T_{\varphi }\) is hyponormal, then

$$\begin{aligned} |a|^2\ge \max \left\{ \frac{\Lambda _{\alpha }(2t-s-1,s)}{\Lambda _{\alpha }(2m-n-1,n)}, W(m,n,t,s)\right\} |b|^2 \end{aligned}$$

if \(t> m,\) and

$$\begin{aligned} |a|^2\ge \max \left\{ \frac{\Lambda _{\alpha }(t,s)}{\Lambda _{\alpha }(m,n)}, W(m,n,t,s)\right\} |b|^2 \end{aligned}$$

if \(t<m,\) where \(W(m,n,t,s)=\max _{i\in [m-n,\infty )}\frac{\Lambda _{\alpha }(t+i,s)-\Lambda _{\alpha }(s+i,t)}{\Lambda _{\alpha }(m+i,n)-\Lambda _{\alpha }(n+i,m)}.\) This completes the proof. \(\square\)

Corollary 2.9

Let \(\varphi (z)=a|z|^{2m}+b|z|^{2s}\) with \(a, b\in \mathbb C.\) Then \(T_{\varphi }\) on \(A^2_{\alpha }({\mathbb{D}})\) is normal and hence hyponormal.

Proof

From (2.9) as in Theorem 2.8, if \(m=n\) and \(s=t,\) then

$$\begin{aligned} \left\| T_{\varphi } \sum _{i=0}^{\infty }c_iz^i\right\| ^2=\left\| T_{\varphi }^* \sum _{i=0}^{\infty }c_iz^i\right\| ^2 \end{aligned}$$

for any \(c_i\in \mathbb C.\) \(\square\)

Example

Let \(\varphi (z)=az^3{\overline{z}}^2+b{\overline{z}}^2z\) with nonzeros \(a, b\in \mathbb C.\) Then,

$$\begin{aligned} \frac{\Lambda _{\alpha }(2,1)}{\Lambda _{\alpha }(3,2)}=\left( \frac{\alpha +4}{3}\right) ^2, \end{aligned}$$

and

$$\begin{aligned} \frac{\Lambda _{\alpha }(2+i,1)-\Lambda _{\alpha }(1+i,2)}{\Lambda _{\alpha }(3+i,2)- \Lambda _{\alpha }(2+i,3)}= & {} \frac{\frac{\Gamma (i+3)^2\Gamma (i+\alpha +3)}{\Gamma (i+\alpha +4)^2\Gamma (i+2)} -\frac{\Gamma (i+2)^2\Gamma (i+\alpha +1)}{\Gamma (i+\alpha +3)^2\Gamma (i)}}{\frac{\Gamma (i+4)^2\Gamma (i+\alpha +3)}{\Gamma (i+\alpha +5)^2\Gamma (i+2)}-\frac{\Gamma (i+3)^2\Gamma (i+\alpha +1)}{\Gamma (i+\alpha +4)^2\Gamma (i)}}\\= & {} \frac{(i+\alpha +4)^2(3i^2+(3\alpha +11)i+4(\alpha +2))}{(i+2)^2(5i^2+(5\alpha +23)i+9(\alpha +2))}. \end{aligned}$$

Set

$$\begin{aligned} f(i)=\frac{(i+\alpha +4)^2(3i^2+(3\alpha +11)i+4(\alpha +2))}{(i+2)^2(5i^2+(5\alpha +23)i+9(\alpha +2))}. \end{aligned}$$

Then the denominator of \(f'(i)\) is

$$\begin{aligned} (i+2)^4(5i^2+(5\alpha +23)i+9(\alpha +2))^2, \end{aligned}$$

which is always positive. Note that the numerator of \(f'(i)\) is

$$\begin{aligned}&(i+2)(i+\alpha +4)[\{14-30(\alpha +2)\}i^4+2\{(14\alpha +56)-(\alpha +2)(30\alpha +124)\}i^3\\ &\quad +\{(21\alpha ^2+161\alpha +294)-(\alpha +2)(30\alpha ^2+342\alpha +694)\}i^2\\ &\quad +(\alpha +2)\{7\alpha ^2+77\alpha +154-(\alpha +2) (94\alpha +382)\}i-2(\alpha +2)(29\alpha ^2+109\alpha +116)]. \end{aligned}$$

Since \(\alpha >-1,\) then

$$\begin{aligned}&14-30(\alpha +2)=-30\alpha -46<0,\\ &(14\alpha +56)-(\alpha +2)(30\alpha +124)=-30{\alpha }^2-170\alpha -192<0,\\ &(21\alpha ^2+161\alpha +294)-(\alpha +2)(30\alpha ^2+342\alpha +694)\\ &\quad =-(30{\alpha }^3+381{\alpha }^2+1217{\alpha }+1094)<0 \end{aligned}$$

and

$$\begin{aligned} 7\alpha ^2+77\alpha +154-(\alpha +2)(94\alpha +382)=-(87{\alpha }^2+493{\alpha }+610)<0. \end{aligned}$$

The numerator of \(f'(i)\) is negative and hence f(i) is decreasing. Thus

$$\begin{aligned} W(3,2,2,1)= & {} \max _{i\in [1,\infty )}\frac{\Lambda _{\alpha }(2+i,1)-\Lambda _{\alpha }(1+i,2)}{\Lambda _{\alpha }(3+i,2)-\Lambda _{\alpha }(2+i,3)}\\= & {} \frac{\Lambda _{\alpha }(3,1)-\Lambda _{\alpha }(2,2)}{\Lambda _{\alpha }(4,2)-\Lambda _{\alpha }(3,3)}\\= & {} \frac{(\alpha +5)^2(7\alpha +22)}{9(14\alpha +46)}. \end{aligned}$$

Hence by Theorem 2.8, if \(T_{\varphi }\) is hyponormal, then

$$\begin{aligned} |a|^2\ge \max \Bigg \{\left( \frac{\alpha +4}{3}\right) ^2, \frac{(\alpha +5)^2(7\alpha +22)}{9(14\alpha +46)}\Bigg \} |b|^2=\left( \frac{\alpha +4}{3}\right) ^2|b|^2. \end{aligned}$$