Skip to main content
Log in

Zeros of Gaussian power series, Hardy spaces and determinantal point processes

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

Given a sequence \((\xi _n)\) of standard i.i.d complex Gaussian random variables, Peres and Virág (in the paper “Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process” Acta Math. (2005) 194, 1-35) discovered the striking fact that the zeros of the random power series \(f(z) = \sum _{n=1}^\infty \xi _n z^{n-1}\) in the complex unit disc \({\mathbb {D}}\) constitute a determinantal point process. The study of the zeros of the general random series f(z), where the restriction of independence is relaxed upon the random variables \((\xi _n)\) is an important open problem. This paper proves that if \((\xi _n)\) is an infinite sequence of complex Gaussian random variables, such that their covariance matrix is invertible and its inverse is a Toeplitz matrix, then the zero set of f(z) constitutes a determinantal point process with the same distribution as the case of i.i.d variables studied by Peres and Virág. The arguments are based on some interplays between Hardy spaces and reproducing kernels. Illustrative examples are constructed from classical Toeplitz matrices and the classical fractional Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. da Fonseca, C.M., Petronilho, J.: Explicit inverses of some tridiagonal matrices. Linear Algebra Appl. 325, 7–21 (2001)

    Article  MathSciNet  Google Scholar 

  2. D’Ambrogi-Ola, B.: Inverse problem of fractional Brownian motion with discrete data, Ph.D. Thesis, University of Helsinki (2009)

  3. Escribano, C., Gonzalo, R., Torrano, E.: On the inversion of infinite moment matrices. Linear Algebra Appl. 475, 292–305 (2015)

    Article  MathSciNet  Google Scholar 

  4. Fikioris, G.: Spectral properties of Kac-Murdock-Szegö matrices with a complex parameter. Linear Algebra Appl. 553, 182–210 (2018)

    Article  MathSciNet  Google Scholar 

  5. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  6. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  7. Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Krishnapur, M.: From random matrices to random analytic functions. Ann. Probab. 37, 314–346 (2009)

    Article  MathSciNet  Google Scholar 

  9. Matsumoto, S., Shirai, T.: Correlation functions for zeros of a Gaussian power series and Pfaffians. Electron. J. Probab. 18(49), 1–18 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Miller, K.S.: Complex Gaussian processes. SIAM Rev. 11, 544–567 (1969)

    Article  MathSciNet  Google Scholar 

  11. Mukeru, S.: Average number of real zeros of random algebraic polynomials defined by the increments of fractional Brownian motion. J. Theor. Probab. 32, 1502–1524 (2019)

    Article  MathSciNet  Google Scholar 

  12. Mukeru, S.: A generalisation of Pisier homogeneous Banach algebra. Michigan Math. J. Advance Publication. (2021). https://doi.org/10.1307/mmj/20205914

    Article  MATH  Google Scholar 

  13. Mukeru, S., Mulaudzi, M.P., Nzabanita, J., Mpanda, M.M.: Zeros of Gaussian power series with dependent random variables. Ill. J. Math. 64(4), 569–582 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Bocconi University Press, Springer-Verlag (2012)

    Book  Google Scholar 

  15. Paulsen, V.I.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  16. Peres, Y., Virág, B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 194, 1–35 (2005)

    Article  MathSciNet  Google Scholar 

  17. Sinai, Y.G.: Self-similar probability distributions. Theory Probab. Appl. 21, 64–80 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safari Mukeru.

Additional information

Communicated by Klaus Guerlebeck.

In the memory of President Dr. John Pombe Joseph Magufuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukeru, S., Mulaudzi, M.P. Zeros of Gaussian power series, Hardy spaces and determinantal point processes. Ann. Funct. Anal. 13, 15 (2022). https://doi.org/10.1007/s43034-021-00159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00159-0

Keywords

Mathematics Subject Classification

Navigation