Skip to main content

Advertisement

Log in

Exploring the Effects of Endocrine-Disrupting Chemicals and miRNA Expression in the Pathogenesis of Endometriosis by Unveiling the Pathways: a Systematic Review

  • Endometriosis: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis, characterized by endometrial-like mucosal tissue outside the uterine cavity, is a reproductive disorder afflicting about 10% of women within the reproductive age. The pathogenesis of endometriosis has been attributed to factors like genetics, environmental particles, and hormones. A comprehensive review of studies from July 2010 to July 2023 across multiple databases was done to aid in a better understanding of the same. The investigation focused on studies delineating the correlation between endocrine disruptors, microRNAs, and endometriosis. To optimize the search scope, keywords and subject headings were used as search terms. Then, two authors rigorously assessed studies using criteria, selecting 27 studies from various databases. Notably, dioxins, organochlorine pesticides, and polychlorinated biphenyls exhibited a solid connection for endometriosis, while bisphenol A and phthalates yielded conflicting results. The heightened presence of bisphenol A, polychlorinated biphenyls, and phthalates was linked to altered gene expression, including genes like AKR1B10, AKR1C3, and FAM49B. MicroRNAs like miRNA-31, miRNA-144, and miRNA-145 emerged as vital factors in the onset of endometriosis and progression. Furthermore, elevated expression of miR-1304-3p, miR-544, and miR-3684 and reduced expression of miR-3935 and miR-4427 exert substantial influence on signaling pathways like NF-κB, MAPK, and Wnt/β-catenin. Currently, literature shows an independent link between endocrine disruptor exposure and endometriosis and between microRNA dysregulation and endometriosis. However, research lacks the combination of all three factors. The review delves into the effects of endocrine disruptors and microRNAs on the pathogenesis of endometriosis to improve our understanding of the disorder and in finding therapies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

Code Availability

NA.

Abbreviations

EDC:

Endocrine-disrupting chemicals

BPA:

Bisphenol A

PCB:

Polychlorinated biphenyl

DEHP:

Di-(2-ethylhexyl)-phthalate

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

GPX:

Glutathione peroxidase

HO:

Heme oxygenase

CAT:

Catalase

miRNA:

MicroRNA

F1:

Filial 1

OCP:

Organochlorine pesticide

PAE:

Phthalate ester

PDBE:

Polybrominated diphenyl ethers

DIE:

Deep infiltrating endometriosis

2,3,7,8-TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

1,2,3,7,8-PeCDD:

1,2,3,7,8-Pentachlorodibenzo-p-dioxin

MnBP:

Mono-n-butyl phthalate

BIRC3:

Baculoviral IAP repeat containing 3

BUB1B:

Mitotic checkpoint serine/threonine-protein kinase BUB1 beta

CDC20:

Cell division cycle protein 2

IL-1β:

Interleukin-1 beta

TNF-α:

Tumor necrosis factor-alpha

DBP:

Dibutyl phthalate

GTP:

Guanine triphosphate

E2F:

E2 transcription factor

MMP:

Metalloproteinase

MiBP:

Mono-isobutyl phthalate

MOP:

Mono-octyl phthalate

MBP:

Mono-butyl phthalate

MCHP:

Mono-cyclohexyl phthalate

MEHP:

Mono-(ethylhexyl) phthalate

MiNP:

Mono-isononyl phthalate

MBzP:

Methylbenzylpiperazine

POP:

Persistent organic pollutants

WQS:

Weighted quantile sum

BKMR:

Bayesian kernel machine regression

OF:

Omental fat

PBDE:

Polybrominated diphenyl ether

γ-HCH:

Gamma-hexachlorocyclohexane

PF:

Peritoneal fluid

MEHHP:

Mono(2-ethyl-5-hydroxyhexyl) phthalate

MEOHP:

Mono-(2-ethyl-5-oxohexyl) phthalate

MEP:

Monoethyl phthalate

AKR:

Aldo-keto reductase

qPCR:

Quantitative polymerase chain reaction

mTOR:

Mammalian target of rapamycin

VEGF:

Vascular endothelial growth factor

NK:

Natural killer

PI3K/Akt:

Phosphoinositide-3-kinase-protein kinase B/Ak strain transforming

MAPK:

Mitogen-activated protein kinase

mRNA:

Messenger RNA

HOXA10:

Homeobox

EuE:

Ectopic endometrial

EcE:

Eutopic endometrial

IGFBP3:

Insulin-like growth factor binding protein 3

COL8A1:

Collagen type VIII alpha 1 chain

Crk:

Protein-proto-oncogene

AFS:

American Fertility Society

NTN4:

Netrin 4

CD14:

Cluster of differentiation 14

NF-κB:

Nuclear factor-kappa B

M1:

Macrophage markers

IRF5:

Interferon regulatory factor 5

SF -1:

Steroidogenic factor 1

ECSCs:

Ectopic endometrial stroma cells

StAR:

Steroidogenic acute regulatory protein

CYP19A1:

Cytochrome P450 family 19 subfamily A member 1

ELNE:

Neutrophil elastase

AMH:

Anti-Müllerian hormone

JAK/STAT:

Janus kinase/signal transducers and activators of transcription

YAP/TAZ:

Yes-associated protein and the transcriptional coactivator with PDZ-binding motif

Wnt:

Wingless-related integration site

FOXO:

Forkhead box O

p53:

Tumor protein

TGF-ß:

Transforming growth factor beta

ECM:

Extracellular matrix

BMP7:

Bone morphogenetic protein-7

References

  1. Haydardedeoglu B, Zeyneloglu HB. The impact of endometriosis on fertility. Womens Health. 2015;11(5):619–23.

    CAS  Google Scholar 

  2. Vercellini P, Viganò P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2014;10(5):261–75.

    CAS  PubMed  Google Scholar 

  3. Smarr MM, Kannan K, Louis GM. Endocrine disrupting chemicals and endometriosis. Fertil Steril. 2016;106(4):959–66.

    CAS  PubMed  Google Scholar 

  4. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sirohi D, Al Ramadhani R, Knibbs LD. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: a systematic literature review. Rev Environ Health. 2021;36(1):101–15.

    CAS  PubMed  Google Scholar 

  6. Upson K, De Roos AJ, Thompson ML, Sathyanarayana S, Scholes D, Barr DB, Holt VL. Organochlorine pesticides and risk of endometriosis: findings from a population-based case–control study. Environ Health Perspect. 2013;121(11–12):1319–24.

    PubMed  PubMed Central  Google Scholar 

  7. Upson K, Sathyanarayana S, De Roos AJ, Thompson ML, Scholes D, Dills R, Holt VL. Phthalates and risk of endometriosis. Environ Res. 2013;126:91–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruner-Tran KL, Osteen KG. Dioxin-like PCBs and endometriosis. Syst Biol Reprod Med. 2010;56(2):132–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Louis GM, Peterson CM, Chen Z, Croughan M, Sundaram R, Stanford J, Varner MW, Kennedy A, Giudice L, Fujimoto VY, Sun L. Bisphenol A and phthalates and endometriosis: the endometriosis: natural history, diagnosis and outcomes study. Fertil Steril. 2013;100(1):162–9.

    Google Scholar 

  10. Hiroi H, Tsutsumi O, Takeuchi T, Momoeda M, Ikezuki Y, Okamura A, Yokota H, Taketani Y. Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocr J. 2004;51(6):595–600.

    CAS  PubMed  Google Scholar 

  11. Nazir S, Usman Z, Imran M, Lone KP, Ahmad G. Women diagnosed with endometriosis show high serum levels of diethyl hexyl phthalate. J Hum Reprod Sci. 2018;11(2):131.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez MA, Cardeal ZL, Carneiro MM, André LC. Study of possible association between endometriosis and phthalate and bisphenol A by biomarkers analysis. J Pharm Biomed Anal. 2019;172:238–42.

    Google Scholar 

  13. Cho YJ, Park SB, Han M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol Cell Endocrinol. 2015;407:9–17.

    CAS  PubMed  Google Scholar 

  14. Mallozzi M, Leone C, Manurita F, Bellati F, Caserta D. Endocrine disrupting chemicals and endometrial cancer: an overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health. 2017;14(3):334.

    PubMed  PubMed Central  Google Scholar 

  15. Sabry R, Yamate J, Favetta L, LaMarre J. MicroRNAs: potential targets and agents of endocrine disruption in female reproduction. J Toxicol Pathol. 2019;32(4):213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lite C, Ahmed SS, Santosh W, Seetharaman B. Prenatal exposure to bisphenol-A altered miRNA-224 and protein expression of aromatase in ovarian granulosa cells concomitant with elevated serum estradiol levels in F1 adult offspring. J Biochem Mol Toxicol. 2019;33(6):e22317.

    PubMed  Google Scholar 

  17. Ohlsson Teague EM, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update. 2010;16(2):142–65.

    CAS  Google Scholar 

  18. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–75.

    PubMed  PubMed Central  Google Scholar 

  19. Zheng B, Xue X, Zhao Y, Chen J, Xu CY, Duan P. The differential expression of microRNA-143,145 in endometriosis. Iran J Reprod Med. 2014;12(8):555.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bashti O, Noruzinia M, Garshasbi M, Abtahi M. miR-31 and miR-145 as potential non-invasive regulatory biomarkers in patients with endometriosis. Cell J. 2018;20(1):84.

    PubMed  PubMed Central  Google Scholar 

  21. Hu T, Yao M, Fu X, Chen C, Wu R. Polychlorinated biphenyl 104 promotes migration of endometrial stromal cells in endometriosis. Toxicol Lett. 2018;290:19–28.

    CAS  PubMed  Google Scholar 

  22. Chou YC, Chen YC, Chen MJ, Chang CW, Lai GL, Tzeng CR. Exposure to mono-n-butyl phthalate in women with endometriosis and its association with the biological effects on human granulosa cells. Int J Mol Sci. 2020;21(5):1794.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Adir M, Salmon-Divon M, Combelles CM, Mansur A, Cohen Y, Machtinger R. In vitro exposure of human luteinized mural granulosa cells to dibutyl phthalate affects global gene expression. Toxicol Sci. 2017;160(1):180–8.

    CAS  PubMed  Google Scholar 

  24. Matta K, Lefebvre T, Vigneau E, Cariou V, Marchand P, Guitton Y, Royer AL, Ploteau S, Le Bizec B, Antignac JP, Cano-Sancho G. Associations between persistent organic pollutants and endometriosis: a multiblock approach integrating metabolic and cytokine profiling. Environ Int. 2022;158:106926.

    CAS  PubMed  Google Scholar 

  25. Zhang Y, Lu Y, Ma H, Xu Q, Wu X. Combined exposure to multiple endocrine disruptors and uterine leiomyomata and endometriosis in US women. Front Endocrinol. 2021;20(12):726876.

    Google Scholar 

  26. Williams KE, Miroshnychenko O, Johansen EB, Niles RK, Sundaram R, Kannan K, Albertolle M, Zhou Y, Prasad N, Drake PM, Giudice LC. Urine, peritoneal fluid and omental fat proteomes of reproductive age women: endometriosis-related changes and associations with endocrine disrupting chemicals. J Proteomics. 2015;113:194–205.

    CAS  PubMed  Google Scholar 

  27. Simonelli A, Guadagni R, De Franciscis P, Colacurci N, Pieri M, Basilicata P, Pedata P, Lamberti M, Sannolo N, Miraglia N. Environmental and occupational exposure to bisphenol A and endometriosis: urinary and peritoneal fluid concentration levels. Int Arch Occup Environ Health. 2017;90:49–61.

    CAS  PubMed  Google Scholar 

  28. Upson K, Sathyanarayana S, De Roos AJ, Koch HM, Scholes D, Holt VL. A population-based case–control study of urinary bisphenol A concentrations and risk of endometriosis. Hum Reprod. 2014;29(11):2457–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril. 2011;95(1):357–9.

    CAS  PubMed  Google Scholar 

  30. Kim MR, Kim JH, Cho HH. Aldo-keto reductase activity after diethylhexyl phthalate exposure in eutopic and ectopic endometrial cells. Eur J Obstet Gynecol Reprod Biol. 2017;215:215–9.

    CAS  PubMed  Google Scholar 

  31. Xu X, Li Z, Liu J, Yu S, Wei Z. MicroRNA expression profiling in endometriosis-associated infertility and its relationship with endometrial receptivity evaluated by ultrasound. J Xray Sci Technol. 2017;25(3):523–32.

    CAS  PubMed  Google Scholar 

  32. Laudanski P, Charkiewicz R, Kuzmicki M, Szamatowicz J, Charkiewicz A, Niklinski J. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol. 2013;11(1):1–7.

    Google Scholar 

  33. Laudanski P, Charkiewicz R, Tolwinska A, Szamatowicz J, Charkiewicz A, Niklinski J. Profiling of selected microRNAs in proliferative eutopic endometrium of women with ovarian endometriosis. Biomed Res Int. 2015;2015:760698.

  34. Yang WW, Hong L, Xu XX, Wang Q, Huang JL, Jiang L. Regulation of miR-33b on endometriosis and expression of related factors. Eur Rev Med Pharmacol Sci. 2017;21(9):2027-2033.

  35. Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS. MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab. 2011;96(12):E1925–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kai K, Joshi NR, Burns GW, Hrbek SM, Vegter EL, Ochoa-Bernal MA, Song Y, Moldovan GE, Sempere LF, Miyadahira EH, Serafini PC, Fazleabas AT. MicroRNA-210–3p regulates endometriotic lesion development by targeting IGFBP3 in baboons and women with endometriosis. Reprod Sci. 2023;30(10):2932–44.

    CAS  PubMed  Google Scholar 

  37. Liu S, Gao S, Wang XY, Wang DB. Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression. Arch Gynecol Obstet. 2012;285:1065–72.

    CAS  PubMed  Google Scholar 

  38. Zhao M, Tang Q, Wu W, Xia Y, Chen D, Wang X. miR-20a contributes to endometriosis by regulating NTN4 expression. Mol Biol Rep. 2014;41:5793–7.

    CAS  PubMed  Google Scholar 

  39. Zhang Z, Li H, Zhao Z, Gao B, Meng L, Feng X. miR-146b level and variants is associated with endometriosis related macrophages phenotype and plays a pivotal role in the endometriotic pain symptom. Taiwan J Obstet Gynecol. 2019;58(3):401–8.

    PubMed  Google Scholar 

  40. Hu Z, Mamillapalli R, Taylor HS. Increased circulating miR-370-3p regulates steroidogenic factor 1 in endometriosis. Am J Physiol Endocrinol Metab. 2019;316(3):E373–82.

    CAS  PubMed  Google Scholar 

  41. Martínez-Zamora MA, Mattioli L, Parera J, Abad E, Coloma JL, Van Babel B, Galceran MT, Balasch J, Carmona F. Increased levels of dioxin-like substances in adipose tissue in patients with deep infiltrating endometriosis. Hum Reprod. 2015;30(5):1059–68.

    PubMed  Google Scholar 

  42. Upson K, Harmon QE, Baird DD. Soy-based infant formula feeding and ultrasound-detected uterine fibroids among young African-American women with no prior clinical diagnosis of fibroids. Environ Health Perspect. 2016;124(6):769–75.

    CAS  PubMed  Google Scholar 

  43. Gao M, Wang H. Frequent milk and soybean consumption are high risks for uterine leiomyoma: a prospective cohort study. Medicine. 2018;97(41):e12009.

  44. Zhang Y, Lu Y, Ma H, Xu Q, Wu X. Combined exposure to multiple endocrine disruptors and uterine leiomyomata and endometriosis in US women. Front Endocrinol. 2021;12:726876.

    Google Scholar 

  45. Bendifallah S, Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E. MicroRNome analysis generates a blood-based signature for endometriosis. Sci Rep. 2022;12(1):4051.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stejskalová A, Fincke V, Nowak M, Schmidt Y, Borrmann K, von Wahlde MK, Schäfer SD, Kiesel L, Greve B, Götte M. Collagen I triggers directional migration, invasion and matrix remodeling of stroma cells in a 3D spheroid model of endometriosis. Sci Rep. 2021;11(1):4115.

    PubMed  PubMed Central  Google Scholar 

  47. Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. Assessment of BMP7, SMAD4, and CDH1 expression profile and regulatory miRNA-542-3p in eutopic and ectopic endometrium of women with endometriosis. Int J Mol Sci. 2023;24(7):6637.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The collection of data has been contributed by all the students working in the laboratory and supported by the Department of Biotechnology, SRM Institute of Science and Technology. We sincerely feel grateful towards Usharani Balu, Deva Sureshbabu, S. Murali Krishnan, Sweta Thakkar, Sooriyakumar S., Sandhya Ramanan, and Uma K. Arun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barathi Seetharaman.

Ethics declarations

Ethical Approval

All the studies quoted in this review article have studies involving human participants that were in accordance with the ethical standards of the institutional and/or national research committee.

Consent to Participate

NA for systematic review.

Consent for Publication

The authors affirm that human samples were not collected for this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrakanth, A., Firdous, S., Vasantharekha, R. et al. Exploring the Effects of Endocrine-Disrupting Chemicals and miRNA Expression in the Pathogenesis of Endometriosis by Unveiling the Pathways: a Systematic Review. Reprod. Sci. 31, 932–941 (2024). https://doi.org/10.1007/s43032-023-01412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01412-8

Keywords

Navigation