Skip to main content

Advertisement

Log in

NLRP3 Inflammasome-dependent Pathway is Involved in the Pathogenesis of Polycystic Ovary Syndrome

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Accumulating evidence has shown that inflammation is a key process in polycystic ovary syndrome (PCOS). Nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasomes play an essential role in inflammation. We investigated the expression of NLRP3 inflammasome in PCOS and its underlying mechanisms. Human granulosa cells (GCs) were isolated from patients with PCOS and control women who underwent in vitro fertilization and embryo transfer. Ovarian specimens were collected from mice with polycystic ovarian changes induced by a high-fat diet and letrozole. RNA sequencing (RNA-Seq) was performed on a granulosa cell line (KGN) overexpressing NLRP3. Polymerase chain reaction (PCR) was performed to quantify the differentially expressed genes of interest. NLRP3 and caspase-1 expression was significantly higher in GCs from patients with PCOS than in GCs from the control group. Increased NLRP3 and caspase-1 expression was also detected by immunohistochemistry in the GCs of a mouse model of polycystic ovarian changes. The serum IL-18 concentration in PCOS-like mice was significantly higher than that in control mice. Following NLRP3 overexpression in KGN cells, the genes involved in N-glycan processing, steroidogenesis, oocyte maturation, autophagy, and apoptosis were upregulated. The RT-qPCR results revealed that the expression levels of GANAB, ALG-5, HSD3B2, ULK1, PTK2B, and Casp7 in KGN cells after NLRP3 overexpression were significantly higher than those in control cells, which was consistent with the RNA-Seq results. Taken together, the NLRP3 inflammasome-dependent pathway is involved in the pathogenesis of PCOS not only by mediating pyroptosis, but also by regulating glycan synthesis, sex hormone synthesis, autophagy, and apoptosis in GCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data obtained or analyzed in this study are included in this article and are available from the corresponding authors.

Abbreviations

NLRP3:

Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3

PCOS:

Polycystic ovary syndrome

DEGs:

Differentially expressed genes

GO:

Gene Ontology

RNA-Seq:

RNA sequencing

qRT PCR:

Quantitative RT-PCR

KEGG:

Kyoto Encyclopedia of Genes and Genome

GANAB:

Glucosidase II Alpha Subunit

ALG5:

Asparagine-Linked Glycosylation 5

HSD3B2:

Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta- And Steroid Delta-Isomerase 2

ULK1:

Unc-51 Like Autophagy Activating Kinase 1

PTK2B:

Protein Tyrosine Kinase 2 Beta

CASP7:

Caspase-7

References

  1. Barrea L, Marzullo P, Muscogiuri G, Di Somma C, Scacchi M, Orio F, et al. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr Res Rev. 2018;31(2):291–301. https://doi.org/10.1017/S0954422418000136.

  2. Lai Q, Xiang W, Li Q, Zhang H, Li Y, Zhu G, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med. 2018;12(5):518–24. https://doi.org/10.1007/s11684-017-0575-y.

    Article  PubMed  Google Scholar 

  3. Gonzalez F, Considine RV, Abdelhadi OA, Acton AJ. Oxidative Stress in Response to Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2019;104(11):5360–71. https://doi.org/10.1210/jc.2019-00987.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohammadi M. Oxidative Stress and Polycystic Ovary Syndrome: A Brief Review. Int J Prev Med. 2019;10:86. https://doi.org/10.4103/ijpvm.IJPVM_576_17.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu Y, Liu H, Li Z, Fan H, Yan X, Liu X, et al. The Release of Peripheral Immune Inflammatory Cytokines Promote an Inflammatory Cascade in PCOS Patients via Altering the Follicular Microenvironment. Front Immunol. 2021;12:685724. https://doi.org/10.3389/fimmu.2021.685724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung ES, Suh K, Han J, Kim H, Kang HS, Choi WS, et al. Amyloid-beta activates NLRP3 inflammasomes by affecting microglial immunometabolism through the Syk-AMPK pathway. Aging Cell. 2022;21(5):e13623. https://doi.org/10.1111/acel.13623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao C, Veleva T, Scott L Jr, Cao S, Li L, Chen G, et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation. 2018;138(20):2227–42. https://doi.org/10.1161/CIRCULATIONAHA.118.035202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The Role of the NLRP3 Inflammasome in Mediating Glomerular and Tubular Injury in Diabetic Nephropathy. Front Physiol. 2022;13:907504. https://doi.org/10.3389/fphys.2022.907504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Irandoost E, Najibi S, Talebbeigi S, Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: a review on molecular mechanisms and possible medical applications. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(4):621–31. https://doi.org/10.1007/s00210-022-02365-6.

    Article  CAS  PubMed  Google Scholar 

  10. Fonseca BM, Pinto B, Costa L, Felgueira E, Rebelo I. Increased expression of NLRP3 inflammasome components in granulosa cells and follicular fluid interleukin(IL)-1beta and IL-18 levels in fresh IVF/ICSI cycles in women with endometriosis. J Assist Reprod Genet. 2023;40(1):191–9. https://doi.org/10.1007/s10815-022-02662-2.

    Article  PubMed  Google Scholar 

  11. Rogers LM, Serezani CH, Eastman AJ, Hasty AH, Englund-Ogge L, Jacobsson B, et al. Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta. 2020;90:45–51. https://doi.org/10.1016/j.placenta.2019.12.009.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu D, Zou H, Liu J, Wang J, Ma C, Yin J, et al. Inhibition of HMGB1 Ameliorates the Maternal-Fetal Interface Destruction in Unexplained Recurrent Spontaneous Abortion by Suppressing Pyroptosis Activation. Front Immunol. 2021;12:782792. https://doi.org/10.3389/fimmu.2021.782792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M. Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol Hum Reprod. 2014;20(1):49–58. https://doi.org/10.1093/molehr/gat051.

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Weng Y, Zhang Y, Wang R, Wang T, Zhou J, et al. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. Sci Total Environ. 2020;745:141049. https://doi.org/10.1016/j.scitotenv.2020.141049.

    Article  CAS  PubMed  Google Scholar 

  16. Ryan GE, Malik S, Mellon PL. Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS. Endocrinology. 2018;159(4):1734–47. https://doi.org/10.1210/en.2017-03218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herman R, Jensterle M, Janež A, Goričar K, Dolžan V. Genetic variability in antioxidative and inflammatory pathways modifies the risk for PCOS and influences metabolic profile of the syndrome. Metabolites. 2020;10(11):439 https://doi.org/10.3390/metabo10110439.

  18. Lai H, Jia X, Yu Q, Zhang C, Qiao J, Guan Y, et al. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome. Biol Reprod. 2014;91(5):127. https://doi.org/10.1095/biolreprod.114.120063.

    Article  PubMed  Google Scholar 

  19. Caldwell AS, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146–59. https://doi.org/10.1210/en.2014-1196.

    Article  CAS  PubMed  Google Scholar 

  20. Kauffman AS, Thackray VG, Ryan GE, Tolson KP, Glidewell-Kenney CA, Semaan SJ, et al. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice. Biol Reprod. 2015;93(3):69. https://doi.org/10.1095/biolreprod.115.131631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153. https://doi.org/10.1186/1741-7015-10-153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99(11):E2269–76. https://doi.org/10.1210/jc.2013-3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590–7. https://doi.org/10.1210/endo.142.8.8293.

    Article  CAS  PubMed  Google Scholar 

  24. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. https://doi.org/10.1210/er.2010-0013.

    Article  PubMed  Google Scholar 

  25. Nelson VL, Legro RS, Strauss JF 3rd, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13(6):946–57. https://doi.org/10.1210/mend.13.6.0311.

    Article  CAS  PubMed  Google Scholar 

  26. Hirsch A, Hahn D, Kempna P, Hofer G, Nuoffer JM, Mullis PE, et al. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology. 2012;153(9):4354–66. https://doi.org/10.1210/en.2012-1145.

    Article  CAS  PubMed  Google Scholar 

  27. Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. Exp Suppl. 2021;112:237–57. https://doi.org/10.1007/978-3-030-76912-3_7.

    Article  CAS  PubMed  Google Scholar 

  28. Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet. 2014;94(2):161–75. https://doi.org/10.1016/j.ajhg.2013.10.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018;34(6):466–76. https://doi.org/10.1016/j.tig.2018.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tharmalingam-Jaikaran T, Walsh SW, McGettigan PA, Potter O, Struwe WB, Evans AC, et al. N-glycan profiling of bovine follicular fluid at key dominant follicle developmental stages. Reproduction. 2014;148(6):569–80. https://doi.org/10.1530/REP-14-0035.

    Article  CAS  PubMed  Google Scholar 

  31. Spitzer D, Murach KF, Lottspeich F, Staudach A, Illmensee K. Different protein patterns derived from follicular fluid of mature and immature human follicles. Hum Reprod. 1996;11(4):798–807. https://doi.org/10.1093/oxfordjournals.humrep.a019257.

    Article  CAS  PubMed  Google Scholar 

  32. Meng XQ, Zheng KG, Yang Y, Jiang MX, Zhang YL, Sun QY, et al. Proline-rich tyrosine kinase2 is involved in F-actin organization during in vitro maturation of rat oocyte. Reproduction. 2006;132(6):859–67. https://doi.org/10.1530/rep.1.01212.

    Article  CAS  PubMed  Google Scholar 

  33. Meng XQ, Cui B, Cheng D, Lyu H, Jiang LG, Zheng KG, et al. Activated proline-rich tyrosine kinase 2 regulates meiotic spindle assembly in the mouse oocyte. J Cell Biochem. 2018;119(1):736–47. https://doi.org/10.1002/jcb.26237.

    Article  CAS  PubMed  Google Scholar 

  34. Cong Y, Wu H, Bian X, Xie Q, Lyu Q, Cui J, et al. Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. J Cell Physiol. 2021;236(2):1043–53. https://doi.org/10.1002/jcp.29914.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng Y, Ma L, Liu N, Tang X, Guo S, Zhang B, et al. Autophagy and apoptosis of porcine ovarian granulosa cells during follicular development. Animals (Basel). 2019;9(12):1111 https://doi.org/10.3390/ani9121111.

  36. Bhardwaj JK, Paliwal A, Saraf P, Sachdeva SN. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J Cell Physiol. 2022;237(2):1157–70. https://doi.org/10.1002/jcp.30613.

    Article  CAS  PubMed  Google Scholar 

  37. Choi JY, Jo MW, Lee EY, Yoon BK, Choi DS. The role of autophagy in follicular development and atresia in rat granulosa cells. Fertil Steril. 2010;93(8):2532–7. https://doi.org/10.1016/j.fertnstert.2009.11.021.

    Article  PubMed  Google Scholar 

  38. Li X, Qi J, Zhu Q, He Y, Wang Y, Lu Y, et al. The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol. 2019;35(8):669–72. https://doi.org/10.1080/09513590.2018.1540567.

    Article  CAS  PubMed  Google Scholar 

  39. Biasizzo MN, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 2020;11:591803. https://doi.org/10.3389/fimmu.2020.591803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sreerangaraja Urs DB, Wu WH, Komrskova K, Postlerova P, Lin YF, Tzeng CR, et al. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int J Mol Sci. 2020;21(10):3592. https://doi.org/10.3390/ijms21103592.

  41. Salehi E, Aflatoonian R, Moeini A, Yamini N, Asadi E, Khosravizadeh Z, et al. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch Gynecol Obstet. 2017;296(6):1219–27. https://doi.org/10.1007/s00404-017-4523-5.

    Article  CAS  PubMed  Google Scholar 

  42. Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Promoter methylation of CYP19A1 gene in Chinese polycystic ovary syndrome patients. Gynecol Obstet Invest. 2013;76(4):209–13. https://doi.org/10.1159/000355314.

    Article  CAS  PubMed  Google Scholar 

  43. Panghiyangani R, Soeharso P, Andrijono DA, Suryandari B, Wiweko M. Kurniati, et al. CYP19A1 Gene Expression in Patients with Polycystic Ovarian Syndrome. J Hum Reprod Sci. 2020;13(2):100–3. https://doi.org/10.4103/jhrs.JHRS_142_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Hongli Yan and the medical staff of Shanghai Changhai Hospital for helping with the case samples collection and information.

Funding

This work was supported by the Programs Foundation of Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, under Grant (No. YJ-12, 2016–2018, Bo Wang). Shanghai Key Laboratory of Embryo Original Diseases (Shelab201902, Bo Wang, Guolian Ding).

Author information

Authors and Affiliations

Authors

Contributions

WB, DGL, and HHF contributed to study design, data acquisition and interpretation, and manuscript drafting. WB, SMF, YCJ, PH, SHQ, BL, and XD collected samples and contributed to data analysis and interpretation. DGL, YCJ, DYT, and SJZ critically revised the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Bo Wang, Hefeng Huang or Guolian Ding.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Xinhua Hospital, School of Medicine, Shanghai Jiaotong University.

Consent for participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Shi, M., Yu, C. et al. NLRP3 Inflammasome-dependent Pathway is Involved in the Pathogenesis of Polycystic Ovary Syndrome. Reprod. Sci. 31, 1017–1027 (2024). https://doi.org/10.1007/s43032-023-01348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01348-z

Keywords

Navigation