Skip to main content

Advertisement

Log in

Omega 6/Omega 3 Ratio Is High in Individuals with Increased Sperm DNA fragmentation

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

An imbalance between omega-6 and omega-3 fatty acids in sperm has been linked with lipid peroxidation and DNA damage in sperm, indicating a possible correlation to fertility potential. This cross-sectional study involved 56 infertile men (aged 25–45), and assessed the relationship between the omega-6 to omega-3 fatty acid ratio in sperm and seminal plasma with sperm DNA fragmentation. Individuals were categorized based on high or low levels of sperm DNA fragmentation according to two tests (TUNEL and SCSA assay less or greater than 10 and 30%, respectively), and their fatty acid composition, as well as sperm functional tests, were analyzed. Results showed that men with high DNA fragmentation exhibited higher percentages of total saturated, monounsaturated, and omega-6 to omega-3 fatty acid ratios in both sperm (P < 0.001) and seminal plasma (P < 0.001) compared to men with low DNA fragmentation. The percentage of sperm lipid peroxidation, and residual histone (P < 0.05) were higher, while the percentage of sperm motility (P < 0.001) was lower in the former compared to the latter group. Moreover, Pearson's correlation revealed positive associations between the omega-6 to omega-3 fatty acid ratio with sperm lipid peroxidation, DNA fragmentation, and residual histones in both sperm and seminal plasma. Overall, these observations suggest that consumption of omega-3 fatty acids may be related to male fertility potential, as it appears that individuals with a high percentage of omega-3 fatty acids have better sperm quality compared to men with a lower omega-3 fatty acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code Availability

No code was used nor generated in this study.

References

  1. Tavilani H, Doosti M, Abdi K, Vaisiraygani A, Joshaghani HR. Decreased polyunsaturated and increased saturated fatty acid concentration in spermatozoa from asthenozoospermic males as compared with normozoospermic males. Andrologia. 2006;38:173–8. https://doi.org/10.1111/j.1439-0272.2006.00735.x.

    Article  CAS  PubMed  Google Scholar 

  2. Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: A comparison between fertile and infertile men. Clin Nutr. 2010;29:100–5. https://doi.org/10.1016/j.clnu.2009.07.008.

    Article  CAS  PubMed  Google Scholar 

  3. Craig LTB, Brush RS, Sullivan MT, Zavy MT, Agbaga MP, Anderson RE. Decreased very long chain polyunsaturated fatty acids in sperm correlates with sperm quantity and quality. J Assist Reprod Genet. 2019;36:1379–85. https://doi.org/10.1007/s10815-019-01464-3.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martínez-Soto JC, Domingo JC, Cordobilla B, Nicolás M, Fernández L, Albero P, Gadea J, Landeras J. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med. 2016;62:387–95. https://doi.org/10.1080/19396368.2016.1246623.

    Article  CAS  PubMed  Google Scholar 

  5. Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids. 2000;106:1–29. https://doi.org/10.1016/S0009-3084(00)00128-6.

    Article  CAS  PubMed  Google Scholar 

  6. Hossain MDS, Tareq KMA, Hammano KI, Tsujii H. Effect of fatty acids on boar sperm motility, viability and acrosome reaction. Reprod Med Biol. 2007;6:235–9. https://doi.org/10.1111/j.1447-0578.2007.00191.x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lenzi A, Gandini L, Maresca V, Rago R, Sgrò P, Dondero F, Picardo M. Fatty acid composition of spermatozoa and immature germ cells. Mol Hum Reprod. 2000;6:226–31. https://doi.org/10.1093/molehr/6.3.226.

    Article  CAS  PubMed  Google Scholar 

  8. Aksoy Y, Aksoy H, Altinkaynak K, Aydin HR, Özkan A. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot Essent Fat Acids. 2006;75:75–9. https://doi.org/10.1016/j.plefa.2006.06.002.

    Article  CAS  Google Scholar 

  9. Zalata AA, Christophe AB, Depuydt CE, Schoonjans F, Comhaire FH. The fatty acid composition of phospholipids of spermatozoa from infertile patients. Mol Hum Reprod. 1998;4:111–8. https://doi.org/10.1093/molehr/4.2.111.

    Article  CAS  PubMed  Google Scholar 

  10. Martínez-Soto JC, Landeras J, Gadea J. Spermatozoa and seminal plasma fatty acids as predictors of cryopreservation success. Andrology. 2013;1:365–75. https://doi.org/10.1111/j.2047-2927.2012.00040.x.

    Article  CAS  PubMed  Google Scholar 

  11. Roqueta-Rivera M, Stroud CK, Haschek WM, Akare SJ, Segre M, Brush RS, Agbaga MP, Anderson RE, Hess RA, Nakamura MT. Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice. J Lipid Res. 2010;51:360–7. https://doi.org/10.1194/jlr.M001180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AMA, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fat Acids. 2000;63:159–65. https://doi.org/10.1054/plef.2000.0174.

    Article  CAS  Google Scholar 

  13. Drevet JR, Hallak J, Nasr-Esfahani MH, Aitken RJ. Reactive oxygen species and their consequences on the structure and function of mammalian spermatozoa. Antioxid Redox Signal. 2022;37:481–500. https://doi.org/10.1089/ars.2021.0235.

    Article  CAS  PubMed  Google Scholar 

  14. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40. https://doi.org/10.1093/humrep/der132.

    Article  PubMed  Google Scholar 

  15. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52. https://doi.org/10.1002/j.1939-4640.2002.tb02324.x.

    Article  CAS  PubMed  Google Scholar 

  16. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, De AP, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    Article  CAS  PubMed  Google Scholar 

  17. Aitken RJ. The Amoroso Lecture: the human spermatozoon a cell in crisis? J Reprod Fertil. 1999;115:1–7.

    Article  CAS  PubMed  Google Scholar 

  18. Carrell DT, Liu L, Peterson CM, Jones KP, Hatasaka HH, Erickson L, Campbell B. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49:49–55.

    Article  CAS  PubMed  Google Scholar 

  19. Aitken RJ, Baker MA, Sawyer D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online. 2003;7:65–70. https://doi.org/10.1016/S1472-6483(10)61730-0.

    Article  CAS  PubMed  Google Scholar 

  20. Panner Selvam MK, Baskaran S, O’Connell S, Almajed W, Hellstrom WJG, Sikka SC. Association between seminal oxidation-reduction potential and sperm DNA fragmentation—a meta-analysis. Antioxidants. 2022;11:1563. https://doi.org/10.3390/antiox11081563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alahmar AT, Singh R. Comparison of the effects of coenzyme Q10 and Centrum multivitamins on semen parameters, oxidative stress markers, and sperm DNA fragmentation in infertile men with idiopathic oligoasthenospermia. Clin Exp Reprod Med. 2022;49:49–56. https://doi.org/10.5653/cerm.2021.04910.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aitken RJ, De IGN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: Development of diagnostic criteria. Hum Reprod. 2010;25:2415–26. https://doi.org/10.1093/humrep/deq214.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammadi Z, Tavalaee M, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Could high DNA stainability (HDS) be a valuable indicator of sperm nuclear integrity? Basic Clin Androl. 2020;30:1–12. https://doi.org/10.1186/s12610-020-00110-8.

    Article  Google Scholar 

  24. Li KP, Yang XS, Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: a network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2022;13:151. https://doi.org/10.3389/fendo.2022.810242.

    Article  Google Scholar 

  25. Hosseini B, Nourmohamadi M, Hajipour S, Taghizadeh M, Asemi Z, Keshavarz SA, Jafarnejad S. The effect of omega-3 fatty acids, EPA, and/or DHA on male infertility: a systematic review and meta-analysis. J Diet Suppl. 2019;16:245–56. https://doi.org/10.1080/19390211.2018.1431753.

    Article  CAS  PubMed  Google Scholar 

  26. Salas-Huetos A, Rosique-Esteban N, Becerra-Tomás N, Vizmanos B, Bulló M, Salas-Salvadó J. The effect of nutrients and dietary supplements on sperm quality parameters: a systematic review andmeta-analysis of randomized clinical trials. Adv Nutr. 2018;9:833–48. https://doi.org/10.1093/ADVANCES/NMY057.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Razavi S, Hashemi F, Khadivi F, Bakhtiari A, Mokhtarian A, Mirzaei H. Improvement of rat sperm chromatin integrity and spermatogenesis with omega 3 following bleomycin, etoposide and cisplatin treatment. Nutr Cancer. 2021;73:514–22. https://doi.org/10.1080/01635581.2020.1757128.

    Article  CAS  PubMed  Google Scholar 

  28. Owumi SE, Nwozo SO, Effiong ME, Najophe ES. Gallic acid and omega-3 fatty acids decrease inflammatory and oxidative stress in manganese-treated rats. Exp Biol Med. 2020;245:835–44. https://doi.org/10.1177/1535370220917643.

    Article  CAS  Google Scholar 

  29. Khoshniat MT, Towhidi A, Rezayazdi K, Zhandi M, Rostami F, Dadashpour Davachi N, Khalooee F, Kastelic J. Dietary omega-3 fatty acids from linseed oil improve quality of post-thaw but not fresh sperm in Holstein bulls. Cryobiology. 2020;93:102–8. https://doi.org/10.1016/j.cryobiol.2020.02.002.

    Article  CAS  PubMed  Google Scholar 

  30. Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen quality among men attending a fertility clinic. Hum Reprod. 2012;27:1466–74. https://doi.org/10.1093/humrep/des065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abayasekara DRE, Wathes DC. Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot Essent Fat Acids. 1999;61:275–87. https://doi.org/10.1054/plef.1999.0101.

    Article  CAS  Google Scholar 

  32. Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, Emery B, Carrell DT. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod. 2014;29:904–17. https://doi.org/10.1093/humrep/deu040.

    Article  CAS  PubMed  Google Scholar 

  33. World Health Organization. Laboratory manual for the examination and processing of human semen. Cambridge Cambridge Univ Press 2010; World Health Organization. http://whqlibdoc.who.int/publications/2010/9789241547789_eng.pdf.

  34. Lepage G, Roy CC. Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res. 1986;27:114–20. https://doi.org/10.1016/s0022-2275(20)38861-1.

    Article  CAS  PubMed  Google Scholar 

  35. López G, Lafuente R, Checa MA, Carreras R, Brassesco M. Diagnostic value of sperm DNA fragmentation and sperm high-magnification for predicting outcome of assisted reproduction treatment. Asian J Androl. 2013;15:790–4. https://doi.org/10.1038/aja.2013.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGregor JA, Allen KGD, Harris MA, Reece M, Wheeler M, French JI, Morrison J. The omega-3 story: nutritional prevention of preterm birth and other adverse pregnancy outcomes. Obstet Gynecol Surv. 2001;56:1–13. https://doi.org/10.1097/00006254-200105001-00001.

    Article  Google Scholar 

  37. Safarinejad MR, Safarinejad S. The roles of omega-3 and omega-6 fatty acids in idiopathic male infertility. Asian J Androl. 2012;14:514–5. https://doi.org/10.1038/aja.2012.46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Safarinejad MR. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia. 2010;43:38–47. https://doi.org/10.1111/j.1439-0272.2009.01013.x.

    Article  PubMed  Google Scholar 

  39. Knapp HR. Prostaglandins in human semen during fish oil ingestion: evidence for in vivo cyclooxygenase inhibition and appearance of novel trienoic compounds. Prostaglandins. 1990;39:407–23. https://doi.org/10.1016/0090-6980(90)90122-C.

    Article  CAS  PubMed  Google Scholar 

  40. Iliceto M, Stensen M, Andersen J, Haugen T, Witczak O. Levels of L-carnitine in human seminal plasma are associated with sperm fatty acid composition. Asian J Androl. 2022;24:451–7. https://doi.org/10.4103/aja2021107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato H, Taketomi Y, Isogai Y, Miki Y, Yamamoto K, Masuda S, Hosono T, Arata S, Ishikawa Y, Ishii T, et al. Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice. J Clin Invest. 2010;120:1400–14. https://doi.org/10.1172/JCI40493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril. 2005;84:662–71. https://doi.org/10.1016/j.fertnstert.2005.03.064.

    Article  CAS  PubMed  Google Scholar 

  43. Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Effect of DHA supplementation on DHA status and sperm motility in asthenozoospermic males. Lipids. 2000;35:149–54. https://doi.org/10.1007/BF02664764.

    Article  CAS  PubMed  Google Scholar 

  44. Gulaya NM, Margitich VM, Govseeva NM, Klimashevsky VM, Gorpynchenko II, Boyko MI. Phospholipid composition of human sperm and seminal plasma in relation to sperm fertility. Arch Androl. 2001;46:169–75. https://doi.org/10.1080/01485010151096405.

    Article  CAS  PubMed  Google Scholar 

  45. Hodge WG, Schachter HM, Barnes D, Pan Y, Lowcock EC, Zhang L, Sampson M, Morrison A, Tran K, Miguelez M, et al. efficacy of ω-3 fatty acids in preventing age-related macular degeneration. a systematic review. Ophthalmology. 2006;113:1165–73. https://doi.org/10.1016/j.ophtha.2006.02.043.

    Article  PubMed  Google Scholar 

  46. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12. https://doi.org/10.1186/1477-7827-2-12

  47. Retterstøl K, Hauger TB, Tran TN, Christophersen BO. Studies on the metabolism of essential fatty acids in isolated human testicular cells. Reproduction. 2001;121:881–7.

    Article  PubMed  Google Scholar 

  48. Khalil ASM, Giribabu N, Yelumalai S, Shahzad H, Kilari EK, Salleh N. Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats. Life Sci. 2021;278:119605. https://doi.org/10.1016/j.lfs.2021.119605.

    Article  CAS  PubMed  Google Scholar 

  49. Legrand P, Rioux V. The complex and important cellular and metabolic functions of saturated fatty acids. Lipids. 2010;45:941–6. https://doi.org/10.1007/s11745-010-3444-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Saeideh Abdollahzadeh: writing the original draft, conduction of experiment, data collection, statistics analysis, sample preparation. Ahmad Riasi, MH Nasr‐Esfahani, and Marziyeh Tavalaee: study design, review, and editing. Farnoosh Jafarpour: reviewing the final manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Ahmad Riasi or M. H. Nasr‐Esfahani.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadeh, S., Riasi, A., Tavalaee, M. et al. Omega 6/Omega 3 Ratio Is High in Individuals with Increased Sperm DNA fragmentation. Reprod. Sci. 30, 3469–3479 (2023). https://doi.org/10.1007/s43032-023-01313-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01313-w

Keywords

Navigation