Skip to main content
Log in

The Influences of Perinatal Androgenic Exposure on Cardiovascular and Metabolic Disease of Offspring of PCOS

  • Reproductive Endocrinology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Hyperandrogenism is an endocrine disorder affecting a large population of reproductive-aged women, thus proportionally high number of fetuses are subjected to prenatal androgenic exposure (PNA). The short-term stimulations at critical ontogenetic stages can wield lasting influences on the health. The most commonly diagnosed conditions in reproductive age women is polycystic ovary syndrome (PCOS). PNA may affect the growth and development of many systems in the whole body and disrupts the normal metabolic trajectory in the offspring of PCOS, contributing to the prevalence of cardiovascular and metabolic diseases (CVMD), including myocardial hypertrophy, hypertension, hyperinsulinemia, insulin resistance, hyperglycemia, obesity, and dyslipidemia, which are the leading causes of hospitalizations in young PCOS offspring. In this review, we focus on the effects of prenatal androgenic exposure on the cardiovascular and metabolic diseases in offspring, discuss the possible pathogenesis respectively, and summarize potential management strategies to improve metabolic health of PCOS offspring. It is expected that the incidence of CVMD and the medical burden will be reduced in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goodman NF, Bledsoe MB, Cobin RH, Futterweit W, Goldzieher JW, Petak SM, et al. American Association of Clinical Endocrinologists medical guidelines for the clinical practice for the diagnosis and treatment of hyperandrogenic disorders. Endocr Pract. 2001;7:120–34.

    CAS  PubMed  Google Scholar 

  2. Idkowiak J, Elhassan YS, Mannion P, Smith K, Webster R, Saraff V, et al. Causes, patterns and severity of androgen excess in 487 consecutively recruited pre- and post-pubertal children. Eur J Endocrinol. 2019;180:213–21.

    CAS  PubMed  Google Scholar 

  3. Dubey P, Reddy SY, Alvarado L, Manuel SL, Dwivedi AK. Prevalence of at-risk hyperandrogenism by age and race/ethnicity among females in the United States using NHANES III. Eur J Obstet Gynecol Reprod Biol. 2021;260:189–97.

    PubMed  Google Scholar 

  4. Esquivel-Zuniga MR, Kirschner CK, McCartney CR, Burt Solorzano CM. Non-PCOS hyperandrogenic disorders in adolescents. Semin Reprod Med. 2022;40:42–52.

    CAS  PubMed  Google Scholar 

  5. Stener-Victorin E, Deng Q. Transmission of polycystic ovary syndrome via epigenetic inheritance. Trends Mol Med. 2021;27:723–4.

    CAS  PubMed  Google Scholar 

  6. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36:487–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med. 2019;25:1894–904.

    CAS  PubMed  Google Scholar 

  8. Guo F, Gong Z, Fernando T, Zhang L, Zhu X, Shi Y. The lipid profiles in different characteristics of women with PCOS and the interaction between dyslipidemia and metabolic disorder states: a retrospective study in Chinese Population. Front Endocrinol. 2022;13:892125.

    Google Scholar 

  9. Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grassi G, Polledri E, Fustinoni S, Chiodini I, Ceriotti F, D’Agostino S, et al. Hyperandrogenism by liquid chromatography tandem mass spectrometry in PCOS: focus on testosterone and androstenedione. J Clin Med. 2020;10:119.

    PubMed  PubMed Central  Google Scholar 

  11. Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 2020;35:100937.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Leary P, Boyne P, Flett P, Beilby J, James I. Longitudinal assessment of changes in reproductive hormones during normal pregnancy. Clin Chem. 1991;37:667–72.

    PubMed  Google Scholar 

  13. Caanen MR, Kuijper EA, Hompes PG, Kushnir MM, Rockwood AL, Meikle WA, et al. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. Eur J Endocrinol. 2016;174:25–32.

    CAS  PubMed  Google Scholar 

  14. Sherman SB, Sarsour N, Salehi M, Schroering A, Mell B, Joe B, et al. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes. 2018;9:400–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, et al. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep. 2019;9:20195.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilde MA, Eising JB, Gunning MN, Koster M, Evelein A, Dalmeijer GW, et al. Cardiovascular and metabolic health of 74 children from women previously diagnosed with polycystic ovary syndrome in comparison with a population-based reference cohort. Reprod Sci. 2018;25:1492–500.

    PubMed  Google Scholar 

  17. Manti M, Fornes R, Pironti G, McCann Haworth S, Zhengbing Z, Benrick A, et al. Maternal androgen excess induces cardiac hypertrophy and left ventricular dysfunction in female mice offspring. Cardiovasc Res. 2020;116:619–32.

    CAS  PubMed  Google Scholar 

  18. Berg T, Silveira MA, Moenter SM. Prepubertal development of GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons and postsynaptic response are altered by prenatal androgenization. J Neurosci. 2018;38:2283–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Silva MS, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS. JCI Insight. 2018;3.

  20. Hu M, Richard JE, Maliqueo M, Kokosar M, Fornes R, Benrick A, et al. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. Proc Natl Acad Sci U S A. 2015;112:14348–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng J, Wu H, Liu H, Li H, Zhu H, Zhou Y, et al. Exposure of hyperandrogen during pregnancy causes depression- and anxiety-like behaviors, and reduced hippocampal neurogenesis in rat offspring. Front Neurosci. 2019;13:436.

    PubMed  PubMed Central  Google Scholar 

  22. Maleki A, Bashirian S, Soltanian AR, Jenabi E, Farhadinasab A. Association between polycystic ovary syndrome and risk of attention-deficit/hyperactivity disorder in offspring: a meta-analysis. Clin Exp Pediatr. 2022;65:85–9.

    PubMed  Google Scholar 

  23. Doherty DA, Newnham JP, Bower C, Hart R. Implications of polycystic ovary syndrome for pregnancy and for the health of offspring. Obstet Gynecol. 2015;125:1397–406.

    PubMed  Google Scholar 

  24. Sir-Petermann T, Maliqueo M, Codner E, Echiburú B, Crisosto N, Pérez V, et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:4637–42.

    CAS  PubMed  Google Scholar 

  25. Osmond C, Barker DJ. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect. 2000;108(Suppl 3):545–53.

    PubMed  PubMed Central  Google Scholar 

  26. Hou M, Gu HC, Wang HH, Liu XM, Zhou CL, Yang Q, et al. Prenatal exposure to testosterone induces cardiac hypertrophy in adult female rats through enhanced Pkcδ expression in cardiac myocytes. J Mol Cell Cardiol. 2019;128:1–10.

    CAS  PubMed  Google Scholar 

  27. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.

    CAS  PubMed  Google Scholar 

  28. Dhalla NS, Shah AK, Tappia PS. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy. Int J Mol Sci. 2020;21:2413.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - a comprehensive review. J Diabetes Complications. 2020;34:107613.

    PubMed  Google Scholar 

  30. Odutola SO, Bridges LE, Awumey EM. Protein kinase C downregulation enhanced extracellular Ca(2+)-induced relaxation of isolated mesenteric arteries from aged Dahl salt-sensitive rats. J Pharmacol Exp Ther. 2019;370:427–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao H, Gong L, Wu S, Jing T, Xiao X, Cui Y, et al. The inhibition of protein kinase C β contributes to the pathogenesis of preeclampsia by activating autophagy. EBioMedicine. 2020;56:102813.

    PubMed  PubMed Central  Google Scholar 

  32. Jiang X, Liu Y, Zhang XY, Liu X, Liu X, Wu X, et al. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) ameliorates salt-sensitive hypertension by inhibiting intestinal Na(+)/H(+) Exchanger 3 activity through a PKC (Protein Kinase C)-mediated NHERF1 and NHERF2 pathway. Hypertension. 2022;79:1668–79.

    CAS  PubMed  Google Scholar 

  33. Andersen GB, Tost J. A summary of the biological processes, disease-associated changes, and clinical applications of DNA methylation. Methods Mol Biol. 1708;2018:3–30.

    Google Scholar 

  34. Illingworth R, Kerr A, Desousa D, Jørgensen H, Ellis P, Stalker J, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 2008;6:e22.

    PubMed  PubMed Central  Google Scholar 

  35. Lambertini L, Saul SR, Copperman AB, Hammerstad SS, Yi Z, Zhang W, et al. Intrauterine reprogramming of the polycystic ovary syndrome: evidence from a pilot study of cord blood global methylation analysis. Front Endocrinol. 2017;8:352.

    Google Scholar 

  36. Xu N, Kwon S, Abbott DH, Geller DH, Dumesic DA, Azziz R, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PloS One. 2011;6:e27286.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bussmann J, Bakkers J, Schulte-Merker S. Early endocardial morphogenesis requires Scl/Tal1. PLoS Genet. 2007;3:e140.

    PubMed  PubMed Central  Google Scholar 

  38. Wong KS, Rehn K, Palencia-Desai S, Kohli V, Hunter W, Uhl JD, et al. Hedgehog signaling is required for differentiation of endocardial progenitors in zebrafish. Dev Biol. 2012;361:377–91.

    CAS  PubMed  Google Scholar 

  39. Kratz AS, Richter KT, Schlosser YT, Schmitt M, Shumilov A, Delecluse HJ, et al. Fbxo28 promotes mitotic progression and regulates topoisomerase IIα-dependent DNA decatenation. Cell Cycle. 2016;15:3419–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorrepati K, He W, Lupse B, Yuan T, Maedler K, Ardestani A. An SCFFBXO28 E3 ligase protects pancreatic β-cells from apoptosis. Int J Mol Sci. 2018;19:975.

    PubMed  PubMed Central  Google Scholar 

  41. Cai L, Liu L, Li L, Jia L. SCF (FBXO28)-mediated self-ubiquitination of FBXO28 promotes its degradation. Cell Signal. 2020;65:109440.

    CAS  PubMed  Google Scholar 

  42. Zou JF, Wu XN, Shi RH, Sun YQ, Qin FJ, Yang YM. Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28. Eur Rev Med Pharmacol Sci. 2020;24:11251–8.

    PubMed  Google Scholar 

  43. Xiong T, Han S, Pu L, Zhang TC, Zhan X, Fu T, et al. Bioinformatics and machine learning methods to identify FN1 as a novel biomarker of aortic valve calcification. Front Cardiovasc Med. 2022;9:832591.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sinha N, Roy S, Huang B, Wang J, Padmanabhan V, Sen A. Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovary†. Biol Reprod. 2020;102:1045–54.

    PubMed  PubMed Central  Google Scholar 

  45. Gopalakrishnan K, Mishra JS, Chinnathambi V, Vincent KL, Patrikeev I, Motamedi M, et al. Elevated testosterone reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant rats. Hypertension. 2016;67:630–9.

    CAS  PubMed  Google Scholar 

  46. More AS, Mishra JS, Hankins GD, Kumar S. Prenatal testosterone exposure decreases aldosterone production but maintains normal plasma volume and increases blood pressure in adult female rats. Biol Reprod. 2016;95:42.

    PubMed  PubMed Central  Google Scholar 

  47. Chinnathambi V, Balakrishnan M, Yallampalli C, Sathishkumar K. Prenatal testosterone exposure leads to hypertension that is gonadal hormone-dependent in adult rat male and female offspring. Biol Reprod. 2012;86(137):1–7.

    Google Scholar 

  48. Blesson CS, Chinnathambi V, Hankins GD, Yallampalli C, Sathishkumar K. Prenatal testosterone exposure induces hypertension in adult females via androgen receptor-dependent protein kinase Cδ-mediated mechanism. Hypertension. 2015;65:683–90.

    CAS  PubMed  Google Scholar 

  49. Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25:1225–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng Y, Yu J, Liang C, Li S, Wen X, Li Y. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng. 2021;44:953–64.

    CAS  PubMed  Google Scholar 

  51. Kusamoto A, Harada M, Azhary J, Kunitomi C, Nose E, Koike H, et al. Temporal relationship between alterations in the gut microbiome and the development of polycystic ovary syndrome-like phenotypes in prenatally androgenized female mice. FASEB J. 2021;35:e21971.

    CAS  PubMed  Google Scholar 

  52. Gunning MN, Sir Petermann T, Crisosto N, van Rijn BB, de Wilde MA, Christ JP, et al. Cardiometabolic health in offspring of women with PCOS compared to healthy controls: a systematic review and individual participant data meta-analysis. Hum Reprod Update. 2020;26:103–17.

    PubMed  Google Scholar 

  53. Hogg K, Wood C, McNeilly AS, Duncan WC. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep. PloS One. 2011;6:e24877.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carrasco A, Recabarren MP, Rojas-García PP, Gutiérrez M, Morales K, Sir-Petermann T, et al. Prenatal testosterone exposure disrupts insulin secretion and promotes insulin resistance. Sci Rep. 2020;10:404.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu C, Cardoso RC, Puttabyatappa M, Padmanabhan V. Developmental programming: prenatal testosterone excess and insulin signaling disruptions in female sheep. Biol Reprod. 2016;94:113.

    PubMed  PubMed Central  Google Scholar 

  56. Puttabyatappa M, Andriessen V, Mesquitta M, Zeng L, Pennathur S, Padmanabhan V. Developmental programming: impact of gestational steroid and metabolic milieus on mediators of insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology. 2017;158:2783–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Padmanabhan V, Veiga-Lopez A, Abbott DH, Recabarren SE, Herkimer C. Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology. 2010;151:595–605.

    CAS  PubMed  Google Scholar 

  58. Roland AV, Nunemaker CS, Keller SR, Moenter SM. Prenatal androgen exposure programs metabolic dysfunction in female mice. J Endocrinol. 2010;207:213–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Veiga-Lopez A, Moeller J, Patel D, Ye W, Pease A, Kinns J, et al. Developmental programming: impact of prenatal testosterone excess on insulin sensitivity, adiposity, and free fatty acid profile in postpubertal female sheep. Endocrinology. 2013;154:1731–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li RJ, Qiu SD, Wang HX, Tian H, Wang LR, Huo YW. Androgen receptor: a new player associated with apoptosis and proliferation of pancreatic beta-cell in type 1 diabetes mellitus. Apoptosis. 2008;13:959–71.

    CAS  PubMed  Google Scholar 

  61. Rae M, Grace C, Hogg K, Wilson LM, McHaffie SL, Ramaswamy S, et al. The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS). PloS One. 2013;8:e56263.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nicol LE, O’Brien TD, Dumesic DA, Grogan T, Tarantal AF, et al. Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys. PloS One. 2014;9:e106527.

    PubMed  PubMed Central  Google Scholar 

  63. Tura A, Ludvik B, Nolan JJ, Pacini G, Thomaseth K. Insulin and C-peptide secretion and kinetics in humans: direct and model-based measurements during OGTT. Am J Physiol Endocrinol Metab. 2001;281:E966–74.

    CAS  PubMed  Google Scholar 

  64. More AS, Mishra JS, Gopalakrishnan K, Blesson CS, Hankins GD, Sathishkumar K. Prenatal testosterone exposure leads to gonadal hormone-dependent hyperinsulinemia and gonadal hormone-independent glucose intolerance in adult male rat offspring. Biol Reprod. 2016;94:5.

    PubMed  Google Scholar 

  65. Ramaswamy S, Grace C, Mattei AA, Siemienowicz K, Brownlee W, MacCallum J, et al. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion. Sci Rep. 2016;6:27408.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes. 2009;58:1365–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tschen SI, Dhawan S, Gurlo T, Bhushan A. Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes. 2009;58:1312–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Maliqueo M, Sir-Petermann T, Pérez V, Echiburú B, de Guevara AL, Gálvez C, et al. Adrenal function during childhood and puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009;94:3282–8.

    CAS  PubMed  Google Scholar 

  69. Bruns CM, Baum ST, Colman RJ, Dumesic DA, Eisner JR, Jensen MD, et al. Prenatal androgen excess negatively impacts body fat distribution in a nonhuman primate model of polycystic ovary syndrome. Int J Obes. 2007;31:1579–85.

    CAS  Google Scholar 

  70. Jackson IJ, Puttabyatappa M, Anderson M, Muralidharan M, Veiga-Lopez A, Gregg B, et al. Developmental programming: prenatal testosterone excess disrupts pancreatic islet developmental trajectory in female sheep. Mol Cell Endocrinol. 2020;518:110950.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou Y, Gong M, Lu Y, Chen J, Ju R. Prenatal androgen excess impairs beta-cell function by decreased sirtuin 3 expression. J Endocrinol. 2021;251:69–81.

    CAS  PubMed  Google Scholar 

  72. Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49:e291.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pepino MY, Kuda O, Samovski D, Abumrad NA. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 2014;34:281–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Okamura DM, Pennathur S, Pasichnyk K, López-Guisa JM, Collins S, Febbraio M, et al. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol. 2009;20:495–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ly LD, Ly DD, Nguyen NT, Kim JH, Yoo H, Chung J, et al. Mitochondrial Ca(2+) uptake relieves palmitate-induced cytosolic Ca(2+) overload in MIN6 cells. Mol Cells. 2020;43:66–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Biden TJ, Boslem E, Chu KY, Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab. 2014;25:389–98.

    CAS  PubMed  Google Scholar 

  77. Römer A, Linn T, Petry SF. Lipotoxic impairment of mitochondrial function in β-cells: a review. Antioxidants. 2021;10:293.

    PubMed  PubMed Central  Google Scholar 

  78. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, et al. Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: two large prospective studies in US men and women. Eur J Epidemiol. 2018;33:1113–23.

    CAS  PubMed  Google Scholar 

  79. Tian S, Lin XH, Xiong YM, Liu ME, Yu TT, Lv M, et al. Prevalence of prediabetes risk in offspring born to mothers with hyperandrogenism. EBioMedicine. 2017;16:275–83.

    PubMed  PubMed Central  Google Scholar 

  80. Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Telleria CM, Motta AB. Prenatally androgenized female rats develop uterine hyperplasia when adult. Mol Cell Endocrinol. 2020;499:110610.

    CAS  PubMed  Google Scholar 

  81. Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Ferrer MJ, Telleria CM, et al. Prenatal testosterone exposure induces insulin resistance, uterine oxidative stress and pro-inflammatory status in rats. Mol Cell Endocrinol. 2021;519:111045.

    CAS  PubMed  Google Scholar 

  82. Parisi F, Milazzo R, Savasi VM, Cetin I. Maternal low-grade chronic inflammation and intrauterine programming of health and disease. Int J Mol Sci. 2021;22:1732.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lawlor DA, Relton C, Sattar N, Nelson SM. Maternal adiposity--a determinant of perinatal and offspring outcomes. Nat Rev Endocrinol. 2012;8:679–88.

    PubMed  Google Scholar 

  84. Gaillard R, Steegers EA, Duijts L, Felix JF, Hofman A, Franco OH, et al. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study. Hypertension. 2014;63:683–91.

    CAS  PubMed  Google Scholar 

  85. Gaillard R, Welten M, Oddy WH, Beilin LJ, Mori TA, Jaddoe VW, et al. Associations of maternal prepregnancy body mass index and gestational weight gain with cardio-metabolic risk factors in adolescent offspring: a prospective cohort study. BJOG. 2016;123:207–16.

    CAS  PubMed  Google Scholar 

  86. Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018;55:71–101.

    CAS  PubMed  Google Scholar 

  87. Litzenburger T, Huber EK, Dinger K, Wilke R, Vohlen C, Selle J, et al. Maternal high-fat diet induces long-term obesity with sex-dependent metabolic programming of adipocyte differentiation, hypertrophy and dysfunction in the offspring. Clin Sci. 2020;134:921–39.

    CAS  Google Scholar 

  88. Alexanderson C, Henningsson S, Lichtenstein P, Holmäng A, Eriksson E. Influence of having a male twin on body mass index and risk for dyslipidemia in middle-aged and old women. Int J Obes. 2011;35:1466–9.

    CAS  Google Scholar 

  89. Huisman HW, Schutte AE, Van Rooyen JM, Malan NT, Malan L, Schutte R, et al. The influence of testosterone on blood pressure and risk factors for cardiovascular disease in a black South African population. Ethn Dis. 2006;16:693–8.

    CAS  PubMed  Google Scholar 

  90. Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes Res. 2003;11:279–86.

    PubMed  Google Scholar 

  91. Abrantes MA, Valencia AM, Bany-Mohammed F, Aranda JV, Beharry KD. Intergenerational influence of antenatal betamethasone on growth, growth factors, and neurological outcomes in rats. Reprod Sci. 2020;27:418–31.

    CAS  PubMed  Google Scholar 

  92. Eriksson JG, Forsén T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999;318:427–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Eriksson J, Forsén T, Tuomilehto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension. 2000;36:790–4.

    CAS  PubMed  Google Scholar 

  94. Recabarren SE, Smith R, Rios R, Maliqueo M, Echiburú B, Codner E, et al. Metabolic profile in sons of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:1820–6.

    CAS  PubMed  Google Scholar 

  95. Sun M, Sun B, Qiao S, Feng X, Li Y, Zhang S, et al. Elevated maternal androgen is associated with dysfunctional placenta and lipid disorder in newborns of mothers with polycystic ovary syndrome. Fertil Steril. 2020;113:1275–1285.e2.

    CAS  PubMed  Google Scholar 

  96. Sun M, Maliqueo M, Benrick A, Johansson J, Shao R, Hou L, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring. Am J Physiol Endocrinol Metab. 2012;303:E1373–85.

    CAS  PubMed  Google Scholar 

  97. Maliqueo M, Lara HE, Sánchez F, Echiburú B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013;166:151–5.

    CAS  PubMed  Google Scholar 

  98. Demissie M, Lazic M, Foecking EM, Aird F, Dunaif A, Levine JE. Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. Am J Physiol Endocrinol Metab. 2008;295:E262–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mimouni N, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab. 2021;33:513–530.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tata B, Mimouni N, Barbotin AL, Malone SA, Loyens A, Pigny P, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med. 2018;24:834–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Battaglia C, Mancini F, Cianciosi A, Busacchi P, Persico N, Paradisi R, et al. Cardiovascular risk in normal weight, eumenorrheic, nonhirsute daughters of patients with polycystic ovary syndrome: a pilot study. Fertil Steril. 2009;92:240–9.

    PubMed  Google Scholar 

  102. Harnois-Leblanc S, Hernandez MI, Codner E, Cassorla F, Oberfield SE, Leibel NI, et al. Profile of daughters and sisters of women with polycystic ovary syndrome: the role of proband’s glucose tolerance. J Clin Endocrinol Metab. 2022;107:e912–23.

    PubMed  Google Scholar 

  103. Sajjad Y, Quenby S, Nickson P, Lewis-Jones DI, Vince G. Androgen receptors are expressed in a variety of human fetal extragenital tissues: an immunohistochemical study. Asian J Androl. 2007;9:751–9.

    CAS  PubMed  Google Scholar 

  104. Lopes RA, Neves KB, Pestana CR, Queiroz AL, Zanotto CZ, Chignalia AZ, et al. Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. Am J Physiol Heart Circ Physiol. 2014;306:H1485–94.

    PubMed  Google Scholar 

  105. Torres-Estay V, Carreño DV, San Francisco IF, Sotomayor P, Godoy AS, Smith GJ. Androgen receptor in human endothelial cells. J Endocrinol. 2015;224:R131–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.

    CAS  PubMed  Google Scholar 

  107. Caldwell AS, Eid S, Kay CR, Jimenez M, McMahon AC, Desai R, et al. Haplosufficient genomic androgen receptor signaling is adequate to protect female mice from induction of polycystic ovary syndrome features by prenatal hyperandrogenization. Endocrinology. 2015;156:1441–52.

    CAS  PubMed  Google Scholar 

  108. Kelly DM, Jones TH. Testosterone: a vascular hormone in health and disease. J Endocrinol. 2013;217:R47–71.

    CAS  PubMed  Google Scholar 

  109. Schiffmann LM, Werthenbach JP, Heintges-Kleinhofer F, Seeger JM, Fritsch M, Günther SD, et al. Mitochondrial respiration controls neoangiogenesis during wound healing and tumour growth. Nat Commun. 2020;11:3653.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ayaz O, Howlett SE. Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biol Sex Differ. 2015;6:9.

    PubMed  PubMed Central  Google Scholar 

  111. Eini F, Novin MG, Joharchi K, Hosseini A, Nazarian H, Piryaei A, et al. Intracytoplasmic oxidative stress reverses epigenetic modifications in polycystic ovary syndrome. Reprod Fertil Dev. 2017;29:2313–23.

    CAS  PubMed  Google Scholar 

  112. Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19:327–41.

    CAS  PubMed  Google Scholar 

  113. Meyer C, Garzia A, Mazzola M, Gerstberger S, Molina H, Tuschl T. The TIA1 RNA-binding protein family regulates EIF2AK2-mediated stress response and cell cycle progression. Mol Cell. 2018;69:622–635.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen B, Du YR, Zhu H, Sun ML, Wang C, Cheng Y, et al. Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature. 2022;605:761–6.

    CAS  PubMed  Google Scholar 

  115. Li J, Cui L, Jiang X, Zhao H, Zhao S, Shi Y, et al. Transmission of polycystic ovary syndrome susceptibility single-nucleotide polymorphisms and their association with phenotype changes in offspring. Hum Reprod. 2020;35:1711–8.

    CAS  PubMed  Google Scholar 

  116. Dapas M, Dunaif A. Deconstructing a syndrome: genomic insights into PCOS causal mechanisms and classification. Endocr Rev. 2022;43:927–65.

    PubMed  PubMed Central  Google Scholar 

  117. Lazic M, Aird F, Levine JE, Dunaif A. Prenatal androgen treatment alters body composition and glucose homeostasis in male rats. J Endocrinol. 2011;208:293–300.

    CAS  PubMed  Google Scholar 

  118. Scully CM, Estill CT, Amodei R, McKune A, Gribbin KP, Meaker M, et al. Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior. Domest Anim Endocrinol. 2018;62:1–9.

    CAS  PubMed  Google Scholar 

  119. Risal S, Li C, Luo Q, Fornes R, Lu H, Eriksson G, et al. Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome. Cell Rep Med. 2023;4:101035.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82071731), Science and Technology Commission of Shanghai Municipality (21Y11907600), Shanghai Municipal Commission of Health and family planning (20215Y0216), Technology Commission of Quzhou Municipality (2022K54) and CAMS Innovation Fund for Medical Sciences (2019-I2M-5-064).

Author information

Authors and Affiliations

Authors

Contributions

FG took part in the literature retrieval and wrote the original draft. SQM finished the manuscript revision and draw figures. YHL took part in the literature retrieval. BKZ edited the draft and draw figures. HFH and LG conceived the idea, supervised implementation, and checked the writing of the essay. All authors state that the material contained in the manuscript has not been published and has not been submitted elsewhere for publication.

Corresponding authors

Correspondence to Ling Gao or Hefeng Huang.

Ethics declarations

Ethics Approval

This is a review on existing literature and there is no need to review by the institutional ethics committee.

Consent for Publication

All authors approve the final version of the manuscript for publication.

Conflict of Interest

All the authors declared no conflict of interest and no relationship with any drug manufacturers.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Mao, S., Long, Y. et al. The Influences of Perinatal Androgenic Exposure on Cardiovascular and Metabolic Disease of Offspring of PCOS. Reprod. Sci. 30, 3179–3189 (2023). https://doi.org/10.1007/s43032-023-01286-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01286-w

Keywords

Navigation