Skip to main content

Advertisement

Log in

High Salt Diet Impairs Male Fertility in Mice via Modulating the Skeletal Homeostasis

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Male reproductive functions and bone health are both adversely affected by the high salt diet (HSD). Nevertheless, the underlying mechanism via which it alters the sperm function remains largely unknown. This study examines the mechanism by which HSD affects male fertility by impairing bone health. For investigating the same, male BALB/c mice were categorized into three groups—HSD group (fed with 4% NaCl), a low salt diet (LSD) group (fed with 0.4% NaCl), and a control group (fed with a normal diet) for 6 weeks and thereafter assessed for various sperm parameters, bone turnover markers, and testosterone levels. Furthermore, the quantitative assessment of testosterone biosynthesis enzymes was performed. Interestingly, we observed that mice fed with HSD showed significant alterations in sperm parameters—motility, count, and vitality, including morphological changes compared to both the LSD and the control groups. In addition, serum analysis showed an increase in bone resorption markers and a decrease in bone formation markers in the HSD group (p < 0.05). Further, HSD caused a decrease in the testosterone level and mRNA expression of testosterone biosynthesis enzymes. Importantly, a significant decrease in bone formation marker osteocalcin (OC) was observed to coincide with the dip in testosterone level in the HSD group. Given that OC plays a key role in maintaining male fertility, the above findings suggest that a decrease in OC levels may affect the testosterone biosynthesis pathway, reducing testosterone hormone secretion and thereby resulting in decreased spermatogenesis. The study for the first time delineates and bridges the mechanism of HSD-mediated bone loss (results in a deficiency of OC) with decreased testosterone biosynthesis and thus impaired male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data and material that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reproductive biology and endocrinology. Reprod Biol Endocrinol. 2015;13:1–9. https://doi.org/10.1186/s12958-015-0032-1.

    Article  Google Scholar 

  2. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, De Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care. Hum Reprod. 2017;32:1786–801. https://doi.org/10.1093/humrep/dex234.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salas-Huetos A, James ER, Aston KI, Jenkins TG, Carrell DT. Diet and sperm quality: nutrients, foods and dietary patterns. Reprod Biol. 2019;19:219–24. https://doi.org/10.1016/j.repbio.2019.07.005.

    Article  PubMed  Google Scholar 

  4. Gray C, Long S, Green C, Gardiner SM, Craigon J, Gardner DS. Maternal fructose and/or salt intake and reproductive outcome in the rat: effects on growth, fertility, sex ratio, and birth order. Biol Reprod. 2013;89:51–1. https://doi.org/10.1095/biolreprod.113.109595.

    Article  CAS  PubMed  Google Scholar 

  5. Organization WH. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. World Health Organization; 2003. https://apps.who.int/iris/handle/10665/42665

    Google Scholar 

  6. Kaushik S, Kumar R, Kain P. Salt an essential nutrient: advances in understanding salt taste detection using drosophila as a model system. J Exp Neurosci. 2018;12:1179069518806894. https://doi.org/10.1177/1179069518806894.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol. 2015;65:1042–50. https://doi.org/10.1016/j.jacc.2014.12.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui Y, Sun K, Xiao Y, Li X, Mo S, Yuan Y, et al. High-salt diet accelerates bone loss accompanied by activation of ion channels related to kidney and bone tissue in ovariectomized rats. Ecotoxicol Environ Saf. 2022;244:114024. https://doi.org/10.1016/j.ecoenv.2022.114024.

    Article  CAS  PubMed  Google Scholar 

  9. Abdelnour SA, Abd El-Hack ME, Noreldin AE, Batiha GE, Beshbishy AM, Ohran H, et al. High salt diet affects the reproductive health in animals: an overview. Animals. 2020;10:590. https://doi.org/10.3390/ani10040590.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fang Y, Zhong R, Sun X, Zhou D. High salt diet decreases reproductive performance in rams and down-regulates gene expression of some components of the renin-angiotensin system in the testis. Theriogenology. 2018;107:127–33. https://doi.org/10.1016/j.theriogenology.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  11. Adekunbi DA, Ogunsola OA, Oyelowo OT, Aluko EO, Popoola AA, Akinboboye OO. Consumption of high sucrose and/or high salt diet alters sperm function in male Sprague–Dawley rats. Egypt J Basic Appl Sci. 2016;3:194–201. https://doi.org/10.1016/j.ejbas.2016.03.003.

    Article  Google Scholar 

  12. Wube T, Haim A, Fares F. Effect of increased dietary salinity on the reproductive status and energy intake of xeric and mesic populations of the spiny mouse. Acomys Physiol Behav. 2009;96(1):122–7. https://doi.org/10.1016/j.physbeh.2008.09.006.

    Article  CAS  PubMed  Google Scholar 

  13. Iranloye BO, Oludare GO, Morakinyo AO, Esume NA, Ekeh LC. Reproductive parameters and oxidative stress status of male rats fed with low and high salt diet. J Hum Reprod Sci. 2013;6(4):267–72. https://doi.org/10.4103/0974-1208.126308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee EY, Cho KH. High intake of sodium chloride exacerbates degradation of human lipoproteins and impairment of reproductive capacity via testicular toxicity in zebrafish. Atherosclerosis. 2016;252:e116. https://doi.org/10.1016/j.atherosclerosis.2016.07.623.

    Article  Google Scholar 

  15. Efrat M, Stein A, Pinkas H, Unger R, Birk R. Dietary patterns are positively associated with semen quality. Fertil Steril. 2018;109:809–16. https://doi.org/10.1016/j.fertnstert.2018.01.010.

    Article  PubMed  Google Scholar 

  16. Cutillas-Tolín A, Adoamnei E, Navarrete-Muñoz EM, Vioque J, Moñino-García M, Jørgensen N, et al. Adherence to diet quality indices in relation to semen quality and reproductive hormones in young men. Hum Reprod. 2019;34:1866–75. https://doi.org/10.1093/humrep/dez157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Danielewicz A, Morze J, Przybyłowicz M, Przybyłowicz KE. Association of the dietary approaches to stop hypertension, physical activity, and their combination with semen quality: a cross-sectional study. Nutrients. 2019;12:39. https://doi.org/10.3390/nu12010039.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu C-Y, Chou Y-C, Chao JC-J, Hsu C-Y, Cha T-L, Tsao C-W. The association between dietary patterns and semen quality in a general Asian population of 7282 males. PloS One. 2015;10:e0134224. https://doi.org/10.1371/journal.pone.0134224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dar HY, Singh A, Shukla P, Anupam R, Mondal RK, Mishra PK, et al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci Rep. 2018;8:1–13. https://doi.org/10.1038/s41598-018-20896-y.

    Article  CAS  Google Scholar 

  20. Wu L, Luthringer BJC, Feyerabend F, et al. Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men. Osteoporos Int. 2017;28:3215–28. https://doi.org/10.1007/s00198-017-4163-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frassetto LA, Morris RC Jr, Sellmeyer DE, Sebastian A. Adverse effects of sodium chloride on bone in the aging human population resulting from habitual consumption of typical American diets. J Nutr. 2008;138:419S–22S. https://doi.org/10.1093/jn/138.2.419S.

    Article  CAS  PubMed  Google Scholar 

  22. Remer T. High salt intake: detrimental not only for blood pressure, but also for bone health? Endocrine. 2015;49:580–2. https://doi.org/10.1007/s12020-015-0626-6.

    Article  CAS  PubMed  Google Scholar 

  23. Tiyasatkulkovit W, Aksornthong S, Adulyaritthikul P, Upanan P, Wongdee K, Aeimlapa R, et al. Excessive salt consumption causes systemic calcium mishandling and worsens microarchitecture and strength of long bones in rats. Sci Rep. 2021;11:1–15. https://doi.org/10.1038/s41598-021-81413-2.

    Article  CAS  Google Scholar 

  24. Oury F. A crosstalk between bone and gonads. Ann NY Acad Sci. 2012;1260:1–7. https://doi.org/10.1111/j.1749-6632.2011.06360.x.

  25. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809. https://doi.org/10.1016/j.cell.2011.02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karsenty G, Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol. 2014;382:521–6. https://doi.org/10.1016/j.cell.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  27. Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, Oliveira PF. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology. 2013;1(3):495–504.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization. WHO laboratory manual for the examination and processing of human semen. World Health Organization; 2021.

    Google Scholar 

  29. Jaâ M. A simple and practical method for rat epididymal sperm count (Rattus norvegicus). Biol Med Nat Prod Chem. 2015;4(1):1–3.

    Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  31. Coskun G, Sencar L, Tuli A, Saker D, Alparslan M, Polat S. Effects of osteocalcin on synthesis of testosterone and INSL3 during adult Leydig cell differentiation. Int J Endocrinol. 2019;2019:1–18. https://doi.org/10.1155/2019/1041760.

  32. Tsai-Morris C-H, Sheng Y, Gutti R, Li J, Pickel J, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) gene: cell-specific expression and transcriptional regulation by androgen in transgenic mouse testis. J Cell Biochem. 2010;109(6):1142–7. https://doi.org/10.1002/jcb.22493.32.

    Article  CAS  PubMed  Google Scholar 

  33. Sheng Y, Tsai-Morris C-H, Gutti R, Maeda Y, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J Biol Chem. 2006;281:35048–56. https://doi.org/10.1074/jbc.M605086200.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H-C, Zhu D, Wang C, Guan H, Li S, Hu C, et al. Effects of etomidate on the steroidogenesis of rat immature Leydig cells. PloS One. 2015;10:e0139311. https://doi.org/10.1371/journal.pone.0139311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nwangwa JN, Udefa AL, Amama EA, Inah IO, Ibrahim HJ, Iheduru SC, et al. Cyperus esculentus L.(tigernut) mitigates high salt diet-associated testicular toxicity in Wistar rats by targeting testicular steroidogenesis, oxidative stress and inflammation. Andrologia. 2020;52(11):e13780. https://doi.org/10.1111/and.13780.

    Article  CAS  PubMed  Google Scholar 

  36. Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14:209. https://doi.org/10.11138/ccmbm/2017.14.1.209.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dai P, Mao Y, Sun X, Li X, Muhammad I, Gu W, et al. Attenuation of oxidative stress-induced osteoblast apoptosis by curcumin is associated with preservation of mitochondrial functions and increased Akt-GSK3β signaling. Cell Physiol Biochem. 2017;41(2):661–77. https://doi.org/10.1159/000457945.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Sushil Saini at National Dairy Research Institute for assistance in RNA isolation and qPCR, Dr. Kriti for ELISA analysis, and Miss Kajal Sihag for sperm microscopy.

Funding

This study was supported by the AIIMS intramural project A-619 sanctioned to Dr. Shrabani Saugandhika.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shrabani Saugandhika or Rupesh K. Srivastava.

Ethics declarations

Ethics Approval

The study protocol was reviewed and approved by the Animal Ethics Committee of All Institute of Medical Sciences, New Delhi, India (Approval number- 64/1AEC-1/2018).

Consent to Participate

All authors had final approval of the submitted versions.

Consent for Publication

The authors and institution agreed with this publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Materials

Fig 1 Correlation analysis of Testosterone with OC and other bone turnover markers: (Pearson correlation) a) OC, Testosterone correlation; *p < 0.05, r2=0.972 b) OPG, Testosterone correlation; *p < 0.05, r2=0.97 c) CTX-II, Testosterone correlation; *p < 0.05, r2=0.904, d) RANKL, Testosterone correlation; *p < 0.05, r2=0.905, e) ALP, Testosterone correlation; *p < 0.05, r2=0.974. (DOCX 90 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saugandhika, S., Sapra, L., Kumari, K. et al. High Salt Diet Impairs Male Fertility in Mice via Modulating the Skeletal Homeostasis. Reprod. Sci. 30, 3339–3352 (2023). https://doi.org/10.1007/s43032-023-01278-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01278-w

Keywords

Navigation