Skip to main content
Log in

Comparative Proteomic and Phospho-proteomic Analysis of Mouse Placentas Generated via In Vivo and In Vitro Fertilization

  • Infertility: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Offspring conceived by assisted reproductive technologies (ART) have increased risk of suffering from gestational complications, and placental dysfunction is related with the adverse outcomes. Studies have revealed that abnormal or adaptive changes can occur in ART placentas, but the potential reasons are not fully understood. Hereby, we tried to use proteomics and phospho-proteomics to find the underlying mechanisms responsible for the changes of ART placentas. Liquid chromatography–tandem mass spectrometry was utilized to perform proteome and phospho-proteome detection on mouse placentas. The differential expressed proteins (DEPs) or phospho-proteins (DEPPs) were analyzed based on subcellular localization, functional classification, and enrichment. Western blot was used to verify the DEPs (Afadin, ZO-1, Ace2, Agt, Slc7a5, and Slc38a10) and measure mTOR signaling activities (mTOR, Rps6, and 4Ebp1). The data showed that 161 DEPs and 304 DEPPs were found in proteome and phospho-proteome, respectively. Multiple biological processes were enriched based on those DEPs and DEPPs, and renin–angiotensin system, cell junction, and PI3K-Akt pathway were investigated. By protein expression identification, two key proteins associated with renin–angiotensin system (Ace2 and Agt) were down-regulated, and the levels of Afadin and ZO-1 (related with cell junction) as well as Slc38a10 were increased in IVF placentas. In addition, mTOR downstream activities were increased as shown by p-Rps6 and p-4Ebp1 in IVF placentas. In conclusion, IVF leads to the changes of cell junction, renin–angiotensin system, amino acid transport, and increased mTOR signaling in mouse placentas, which may be associated with the altered structure and function of IVF placentas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data in this study are not publicly available due to their containing information that could compromise the privacy of research participants. However, the data are available from the corresponding author X.W. (wangxh919@fmmu.edu.cn) on reasonable request.

References

  1. Crawford GE, Ledger WL. In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG. 2019;126(2):237–43. https://doi.org/10.1111/1471-0528.15526.

    Article  CAS  PubMed  Google Scholar 

  2. Qin J, Liu X, Sheng X, Wang H, Gao S. Assisted reproductive technology and the risk of pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: a meta-analysis of cohort studies. Fertil Steril. 2016;105(1):73–85.e1–6. https://doi.org/10.1016/j.fertnstert.2015.09.007.

  3. Reig A, Seli E. The association between assisted reproductive technologies and low birth weight. Curr Opin Obstet Gynecol. 2019;31(3):183–7. https://doi.org/10.1097/gco.0000000000000535.

    Article  PubMed  Google Scholar 

  4. Dhalwani NN, Boulet SL, Kissin DM, Zhang Y, McKane P, Bailey MA, et al. Assisted reproductive technology and perinatal outcomes: conventional versus discordant-sibling design. Fertil Steril. 2016;106(3):710-6.e2. https://doi.org/10.1016/j.fertnstert.2016.04.038.

    Article  PubMed  Google Scholar 

  5. Liberman RF, Getz KD, Heinke D, Luke B, Stern JE, Declercq ER, et al. Assisted reproductive technology and birth defects: effects of subfertility and multiple births. Birth defects Res. 2017;109(14):1144–53. https://doi.org/10.1002/bdr2.1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo XY, Liu XM, Jin L, Wang TT, Ullah K, Sheng JZ, et al. Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil Steril. 2017;107(3):622-31.e5. https://doi.org/10.1016/j.fertnstert.2016.12.007.

    Article  PubMed  Google Scholar 

  7. Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease†. Biol Reprod. 2021;104(4):734–44. https://doi.org/10.1093/biolre/ioaa224.

    Article  PubMed  Google Scholar 

  8. Cui L, Zhou W, Xi B, Ma J, Hu J, Fang M, et al. Increased risk of metabolic dysfunction in children conceived by assisted reproductive technology. Diabetologia. 2020;63(10):2150–7. https://doi.org/10.1007/s00125-020-05241-1.

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Sun FZ, Huang X, Wang X, Tang N, Zhu B, et al. Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice. Sci Rep. 2015;5:10596. https://doi.org/10.1038/srep10596.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bloise E, Feuer SK, Rinaudo PF. Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding. Hum Reprod Update. 2014;20(6):822–39. https://doi.org/10.1093/humupd/dmu032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donjacour A, Liu X, Lin W, Simbulan R, Rinaudo PF. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol Reprod. 2014;90(4):80. https://doi.org/10.1095/biolreprod.113.113134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vrooman LA, Bartolomei MS. Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reprod Toxicol. 2017;68:72–84. https://doi.org/10.1016/j.reprotox.2016.07.015.

    Article  CAS  PubMed  Google Scholar 

  13. de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015;24(24):6975–85. https://doi.org/10.1093/hmg/ddv400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–52. https://doi.org/10.1146/annurev-cellbio-100814-125620.

    Article  CAS  PubMed  Google Scholar 

  15. Barker DJ, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013;34(10):841–5. https://doi.org/10.1016/j.placenta.2013.07.063.

    Article  CAS  PubMed  Google Scholar 

  16. Thornburg KL, Marshall N. The placenta is the center of the chronic disease universe. Am J Obstet Gynecol. 2015;213(4 Suppl):S14-20. https://doi.org/10.1016/j.ajog.2015.08.030.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mayya V, Han DK. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev Proteomics. 2009;6(6):605–18. https://doi.org/10.1586/epr.09.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaigne A. In vitro fertilization of mouse oocyte. Methods Mol Biol. 2018;1818:37–42. https://doi.org/10.1007/978-1-4939-8603-3_5.

    Article  CAS  PubMed  Google Scholar 

  19. Dong J, Guo X, Qian C, Wang J, Lei H, Chen S, et al. In vitro fertilization causes excessive glycogen accumulation in mouse placenta. Placenta. 2021;114:29–38. https://doi.org/10.1016/j.placenta.2021.08.050.

    Article  CAS  PubMed  Google Scholar 

  20. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34. https://doi.org/10.1016/j.cell.2008.11.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hassan B, Akcakanat A, Holder AM, Meric-Bernstam F. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin N Am. 2013;22(4):641–64. https://doi.org/10.1016/j.soc.2013.06.008.

    Article  PubMed  Google Scholar 

  22. Manna C, Lacconi V, Rizzo G, De Lorenzo A, Massimiani M. Placental dysfunction in assisted reproductive pregnancies: perinatal, neonatal and adult life outcomes. Int J Mol Sci. 2022;23(2). https://doi.org/10.3390/ijms23020659.

  23. Cochrane E, Pando C, Kirschen GW, Soucier D, Fuchs A, Garry DJ. Assisted reproductive technologies (ART) and placental abnormalities. J Perinat Med. 2020;48(8):825–8. https://doi.org/10.1515/jpm-2020-0141.

    Article  CAS  PubMed  Google Scholar 

  24. Haavaldsen C, Tanbo T, Eskild A. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum Reprod. 2012;27(2):576–82. https://doi.org/10.1093/humrep/der428.

    Article  CAS  PubMed  Google Scholar 

  25. Dong J, Wen L, Guo X, Xiao X, Jiang F, Li B, et al. The increased expression of glucose transporters in human full-term placentas from assisted reproductive technology without changes of mTOR signaling. Placenta. 2019;86:4–10. https://doi.org/10.1016/j.placenta.2019.08.087.

    Article  CAS  PubMed  Google Scholar 

  26. Sui L, An L, Tan K, Wang Z, Wang S, Miao K, et al. Dynamic proteomic profiles of in vivo- and in vitro-produced mouse postimplantation extraembryonic tissues and placentas. Biol Reprod. 2014;91(6):155. https://doi.org/10.1095/biolreprod.114.124248.

    Article  CAS  PubMed  Google Scholar 

  27. Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, et al. The involvement of cell adhesion molecules, tight junctions, and gap junctions in human placentation. Reprod Sci. 2021;28(2):305–20. https://doi.org/10.1007/s43032-020-00364-7.

    Article  CAS  PubMed  Google Scholar 

  28. Malassine A, Cronier L. Involvement of gap junctions in placental functions and development. Biochim Biophys Acta. 2005;1719(1–2):117–24. https://doi.org/10.1016/j.bbamem.2005.09.019.

    Article  CAS  PubMed  Google Scholar 

  29. Leal CRV, Costa LB, Ferreira GC, Ferreira AM, Reis FM, Simões ESAC. Renin-angiotensin system in normal pregnancy and in preeclampsia: a comprehensive review. Pregnancy hypertension. 2022;28:15–20. https://doi.org/10.1016/j.preghy.2022.01.011.

    Article  PubMed  Google Scholar 

  30. Poisner AM. The human placental renin-angiotensin system. Front Neuroendocrinol. 1998;19(3):232–52. https://doi.org/10.1006/frne.1998.0166.

    Article  CAS  PubMed  Google Scholar 

  31. Mistry HD, Kurlak LO, Broughton PF. The placental renin-angiotensin system and oxidative stress in pre-eclampsia. Placenta. 2013;34(2):182–6. https://doi.org/10.1016/j.placenta.2012.11.027.

    Article  CAS  PubMed  Google Scholar 

  32. Tamanna S, Lumbers ER, Morosin SK, Delforce SJ, Pringle KG. ACE2: a key modulator of the renin-angiotensin system and pregnancy. Am J Physiol Regul Integr Comp Physiol. 2021;321(6):R833–43. https://doi.org/10.1152/ajpregu.00211.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS, Petraglia F, et al. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology. 2012;153(7):3457–67. https://doi.org/10.1210/en.2011-1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li B, Chen S, Tang N, Xiao X, Huang J, Jiang F, et al. Assisted reproduction causes reduced fetal growth associated with downregulation of paternally expressed imprinted genes that enhance fetal growth in mice. Biol Reprod. 2016;94(2):45. https://doi.org/10.1095/biolreprod.115.136051.

    Article  CAS  PubMed  Google Scholar 

  35. Tripathi R, Aggarwal T, Lindberg FA, Klemm AH, Fredriksson R. SLC38A10 regulate glutamate homeostasis and modulate the AKT/TSC2/mTOR PATHWAY IN MOUSE PRIMARY CORTEX CELLS. Front Cell Dev Biol. 2022;10:854397. https://doi.org/10.3389/fcell.2022.854397.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dong J, Shin N, Chen S, Lei J, Burd I, Wang X. Is there a definite relationship between placental mTOR signaling and fetal growth? Biol Reprod. 2020;103(3):471–86. https://doi.org/10.1093/biolre/ioaa070.

    Article  PubMed  Google Scholar 

  37. Howell JJ, Ricoult SJ, Ben-Sahra I, Manning BD. A growing role for mTOR in promoting anabolic metabolism. Biochem Soc Trans. 2013;41(4):906–12. https://doi.org/10.1042/bst20130041.

    Article  CAS  PubMed  Google Scholar 

  38. Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 2019. https://doi.org/10.1038/s41576-019-0169-4.

    Article  PubMed  Google Scholar 

  39. Kalisch-Smith JI, Simmons DG, Dickinson H, Moritz KM. Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta. 2017;54:10–6. https://doi.org/10.1016/j.placenta.2016.12.008.

    Article  CAS  PubMed  Google Scholar 

  40. Feuer SK, Donjacour A, Simbulan RK, Lin W, Liu X, Maltepe E, et al. Sexually dimorphic effect of in vitro fertilization (IVF) on adult mouse fat and liver metabolomes. Endocrinology. 2014;155(11):4554–67. https://doi.org/10.1210/en.2014-1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruggeri E, Lira-Albarrán S, Grow EJ, Liu X, Harner R, Maltepe E, et al. Sex-specific epigenetic profile of inner cell mass of mice conceived in vivo or by IVF. Mol Hum Reprod. 2020;26(11):866–78. https://doi.org/10.1093/molehr/gaaa064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whidden L, Martel J, Rahimi S, Chaillet JR, Chan D, Trasler JM. Compromised oocyte quality and assisted reproduction contribute to sex-specific effects on offspring outcomes and epigenetic patterning. Hum Mol Genet. 2016;25(21):4649–60. https://doi.org/10.1093/hmg/ddw293.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all authors who were involved in this study. We also appreciate Dr. Lei Zhao for helping to edit the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (82071717, 82101794) and Tangdu Hospital Platform Construction Program (2020XKPT003).

Author information

Authors and Affiliations

Authors

Contributions

J.D. was involved in study design, data acquisition and analysis, and manuscript writing. Q.X. participated in data collection and manuscript writing. S.C., H.L., and J.W. participated in experiment practices. S.Y. and C.Q. engaged in data analysis. X.W. participated in the study design and helped to edit the manuscript.

Corresponding author

Correspondence to Xiaohong Wang.

Ethics declarations

Ethics Approval

This work was approved by the Ethics Committee of Tangdu Hospital (ID: 2021EC118).

Consent for Publication

The manuscript has been read and approved by all named authors for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 513 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Xu, Q., Chen, S. et al. Comparative Proteomic and Phospho-proteomic Analysis of Mouse Placentas Generated via In Vivo and In Vitro Fertilization. Reprod. Sci. 30, 1143–1156 (2023). https://doi.org/10.1007/s43032-022-01109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01109-4

Keywords

Navigation