Skip to main content

Advertisement

Log in

The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 03 December 2020

This article has been updated

Abstract

Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 03 December 2020

    A Correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s43032-020-00397-y</RefSource><RefTarget Address="10.1007/s43032-020-00397-y" TargetType="DOI"/></ExternalRef>

Abbreviations

PECAM1:

platelet-endothelial cell adhesion molecule-1

VCAM1:

vascular cell adhesion molecule-1

EMILIN1:

elastin microfibril interface-located protein-1

ECM:

extracellular matrix

Dsg2:

desmoglein-2

Dsg3:

desmoglein-3

PECAM1:

platelet-endothelial cell adhesion molecule-1

NCAM:

neural cell adhesion molecule

Mel-CAM:

melanoma cell adhesion molecule

ICAM1:

intercellular adhesion molecule-1

VCAM1:

vascular cell adhesion molecule-1

ZO:

zonnula occludens

CTB:

cytotrophoblast

STB:

syncytiotrophoblast

EVTs:

extravillous trophoblasts

PCT:

proximal column trophoblast

DCT:

distal column trophoblast

iEVT:

intestitial extravillous trophoblast

egEVT:

endoglandular extravillous trophoblast

evEVT:

endovascular extravillous trophoblast

GC:

giant cell

dSC:

decidual stromal cell

dNK:

decidual natural killer cell

References

  1. Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, Czika A, Nelson W, Lamptey J, et al. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct. 2020;38:106–17.

    CAS  PubMed  Google Scholar 

  2. Adu-Gyamfi EA, Wang Y-X, Ding Y-B. The interplay between thyroid hormones and the placenta: a comprehensive review. Biol Reprod. 2020;102:8–17.

    PubMed  Google Scholar 

  3. Adu-Gyamfi EA, Ding Y-B, Wang Y-X. Regulation of placentation by the transforming growth factor beta superfamily. Biol Reprod. 2020;102:18–26.

    PubMed  Google Scholar 

  4. Adu-Gyamfi EA, Lamptey J, Duan F, Wang Y-X, Ding Y-B. The transforming growth factor β superfamily as possible biomarkers of preeclampsia: a comprehensive review. Biomark Med. 2019;13:1321–30.

    CAS  PubMed  Google Scholar 

  5. Fondjo LA, Gyamfi EAA, Owiredu WKBA, Turpin CA, Mante DA, Anto EO. Maternal serum adiponectin, leptin and adiponectin-leptin ratio as possible biomarkers of preeclampsia. Edorium J Gynecol Obs. 2016;2:41–7.

    Google Scholar 

  6. Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, et al. Activin and inhibin signaling: from regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine. 2020;133:155105.

    CAS  PubMed  Google Scholar 

  7. Gyamfi EAA. Maternal serum levels of adiponectin and leptin in non-pregnant, normal pregnant and preeclamptic women 2015.

  8. Adu-Gyamfi EA, Czika A, Liu T-H, Gorleku PN, Fondjo LA, Djankpa FT, Ding Y-B, Wang Y-X. Ephrin and Eph receptor signaling in female reproductive physiology and pathology. Biol Reprod 2020.

  9. Truong H, Danen EHJ. Integrin switching modulates adhesion dynamics and cell migration. Cell Adhes Migr. 2009;3:179–81.

    Google Scholar 

  10. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Integrins. Molecular Biology of the Cell. 4th edition. Garland Science; 2002.

  11. Lee CQE, Turco MY, Gardner L, Simons BD, Hemberger M, Moffett A. Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta. Development. 2018;145:dev162305.

    PubMed  PubMed Central  Google Scholar 

  12. Thirkill TL, Douglas GC. The vitronectin receptor plays a role in the adhesion of human cytotrophoblast cells to endothelial cells. Endothelium. 1999;6:277–90.

    CAS  PubMed  Google Scholar 

  13. Zhang M, Wang M, Gao R, Liu X, Chen X, Geng Y, et al. Altered β1, 6-GlcNAc and bisecting GlcNAc-branched N-glycan on integrin β1 are associated with early spontaneous miscarriage in humans. Hum Reprod. 2015;30:2064–75.

    CAS  PubMed  Google Scholar 

  14. Moss L, Proakobphol A, Wiedmann T-W, Fisher SJ, Damsky CH. Glycosylation of human trophoblast integrins is stage and cell-type specific. Glycobiology. 1994;4:567–75.

    CAS  PubMed  Google Scholar 

  15. Zhou Y, Damsky CH, Chiu K, Roberts JM, Fisher SJ. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J Clin Invest. 1993;91:950–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Divers MJ, Bulmer JN, Miller D, Lilford RJ. Beta 1 integrins in third trimester human placentae: no differential expression in pathological pregnancy. Int J Gynecol Obstet. 1996;52:223–4.

    Google Scholar 

  17. Haider S, Meinhardt G, Saleh L, Fiala C, Pollheimer J, Knöfler M. Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc Natl Acad Sci. 2016;113:E7710 LP–E7719.

    Google Scholar 

  18. Meinhardt G, Haider S, Haslinger P, Proestling K, Fiala C, Pollheimer J, et al. Wnt-dependent T-cell factor-4 controls human etravillous trophoblast motility. Endocrinology. 2014;155:1908–20.

    PubMed  Google Scholar 

  19. Chaudhary P, Malhotra SS, Babu GS, Sobti RC, Gupta SK. HGF promotes HTR-8/SVneo cell migration through activation of MAPK/PKA signaling leading to up-regulation of WNT ligands and integrins that target β-catenin. Mol Cell Biochem. 2019;453:11–32.

    CAS  PubMed  Google Scholar 

  20. Chen C-P, Chen C-Y, Wu Y-H, Chen C-Y. Oxidative stress reduces trophoblast FOXO1 and integrin β3 expression that inhibits cell motility. Free Radic Biol Med. 2018;124:189–98.

    CAS  PubMed  Google Scholar 

  21. Gu W-W, Yang L, Zhen X-X, Gu Y, Xu H, Liu M, Yang Q, Zhang X, Wang J. Silencing SEC5 inhibits trophoblast invasion via integrin/Ca2+ signaling. Reproduction 2019; 1.

  22. Harris LK, Jones CJP, Aplin JD. Adhesion molecules in human trophoblast–a review. II. Extravillous trophoblast. Placenta. 2009;30:299–304.

    CAS  PubMed  Google Scholar 

  23. Yamamoto M, Ikezaki M, Toujima S, Iwahashi N, Mizoguchi M, Nanjo S, et al. Calreticulin is involved in invasion of human extravillous trophoblasts through functional regulation of integrin b 1. Endocrinology. 2017;158:3874–89.

    CAS  PubMed  Google Scholar 

  24. Jovanovic M, Stefanoska I, Radojcic L, Vicovac L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP) 2 and MMP9 and integrins α5 and β1. Reproduction. 2010;139:789–98.

    CAS  PubMed  Google Scholar 

  25. Yu H, Huang X, Ma Y, Gao M, Wang O, Gao T, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions. Int J Biol Sci. 2013;9:966–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen L, Liu X, Pan Z, Liu S, Han H, Zhao C, et al. The role of IL-8/CXCR2 signaling in microcystin-LR triggered endothelial cell activation and increased vascular permeability. Chemosphere. 2018;194:43–8.

    CAS  PubMed  Google Scholar 

  27. Pitman H, Innes BA, Robson SC, Bulmer JN, Lash GE. Altered expression of interleukin-6, interleukin-8 and their receptors in decidua of women with sporadic miscarriage. Hum Reprod. 2013;28:2075–86.

    CAS  PubMed  Google Scholar 

  28. Rattila S, Dunk CE, Im M, Grichenko O, Zhou Y, Cohen M, et al. Interaction of pregnancy-specific glycoprotein 1 with integrin Α5β1 is a modulator of extravillous trophoblast functions. Cells. 2019;8:1369.

    CAS  PubMed Central  Google Scholar 

  29. Le HT, Atif J, Mara DL, Castellana B, Treissman J, Baltayeva J, et al. ADAM8 localizes to extravillous trophoblasts within the maternal–fetal interface and potentiates trophoblast cell line migration through a β1 integrin-mediated mechanism. MHR Basic Sci Reprod Med. 2018;24:495–509.

    CAS  Google Scholar 

  30. Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 1997;99:2139–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Church HJ, Richards AJ, Aplin JD. Laminins in decidua, placenta and choriocarcinoma cells. Placenta. 1997;18:143–62.

    Google Scholar 

  32. Feinberg RF, Kliman HJ, Lockwood CJ. Is oncofetal fibronectin a trophoblast glue for human implantation? Am J Pathol. 1991;138:537.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huppertz B, Kertschanska S, Frank H-G, Gaus G, Funayama H, Kaufmann P. Extracellular matrix components of the placental extravillous trophoblast: immunocytochemistry and ultrastructural distribution. Histochem Cell Biol. 1996;106:291–301.

    CAS  PubMed  Google Scholar 

  34. Aplin JD, Haigh T, Jones CJP, Church HJ, Vicovac L. Development of cytotrophoblast columns from explanted first-trimester human placental villi: role of fibronectin and integrin α5β1. Biol Reprod. 1999;60:828–38.

    CAS  PubMed  Google Scholar 

  35. Feinberg RF, Kliman HJ, Wang CL. Transforming growth factor-beta stimulates trophoblast oncofetal fibronectin synthesis in vitro: implications for trophoblast implantation in vivo. J Clin Endocrinol Metab. 1994;78:1241–8.

    CAS  PubMed  Google Scholar 

  36. Bischof P, Haenggeli L, Campana A. Integrins and adhesion molecules: gelatinase and oncofetal fibronectin secretion is dependent on integrin expression on human cytotrophoblasts. Hum Reprod. 1995;10:734–42.

    CAS  PubMed  Google Scholar 

  37. Woodfin A, Voisin M-B, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol. 2007;27:2514–23.

    CAS  PubMed  Google Scholar 

  38. Bauer S, Pollheimer J, Hartmann J, Husslein P, Aplin JD, Knöfler M. Tumor necrosis factor-α inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in first-trimester villous explant cultures. J Clin Endocrinol Metab. 2004;89:812–22.

    CAS  PubMed  Google Scholar 

  39. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97:540–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaufmann P, Huppertz B, Frank H-G. The fibrinoids of the human placenta: origin, composition and functional relevance. Ann Anat. 1996;178:485–501.

    CAS  PubMed  Google Scholar 

  41. Aplin JD. Expression of integrin α6β4 in human trophoblast and its loss from extravillous cells. Placenta. 1993;14:203–15.

    CAS  PubMed  Google Scholar 

  42. Vićovac L, Jones CJP, Aplin JD. Trophoblast differentiation during formation of anchoring villi in a model of the early human placenta in vitro. Placenta. 1995;16:41–56.

    PubMed  Google Scholar 

  43. Irving JA, Lala PK. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-β, IGF-II, and IGFBP-1. Exp Cell Res. 1995;217:419–27.

    CAS  PubMed  Google Scholar 

  44. Thirkill TL, Hendren SR, Soghomonians A, Mariano NF, Barakat AI, Douglas GC. Regulation of trophoblast beta1-integrin expression by contact with endothelial cells. Cell Commun Signal. 2004;2:4.

    PubMed  PubMed Central  Google Scholar 

  45. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99:2152–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Damsky CH, Fisher SJ. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol. 1998;10:660–6.

    CAS  PubMed  Google Scholar 

  47. Machado-Pineda Y, Cardeñes B, Reyes R, López-Martín S, Toribio V, Sánchez-Organero P, et al. CD9 controls integrin α5β1-mediated cell adhesion by modulating its association with the metalloproteinase ADAM17. Front Immunol. 2018;9:2474.

    PubMed  PubMed Central  Google Scholar 

  48. Blake DJ, Martiszus JD, Lone TH, Fenster SD. Ablation of the CD9 receptor in human lung cancer cells using CRISPR/Cas alters migration to chemoattractants including IL-16. Cytokine. 2018;111:567–70.

    CAS  PubMed  Google Scholar 

  49. Miki Y, Yashiro M, Okuno T, Kitayama K, Masuda G, Hirakawa K, et al. CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells. Br J Cancer. 2018;118:867–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hirano T, Higuchi T, Ueda M, Inoue T, Kataoka N, Maeda M, et al. CD9 is expressed in extravillous trophoblasts in association with integrin α3 and integrin α5. MHR Basic Sci Reprod Med. 1999;5:162–7.

    CAS  Google Scholar 

  51. Spessotto P, Bulla R, Danussi C, Radillo O, Cervi M, Monami G, et al. EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall. J Cell Sci. 2006;119:4574–84.

    CAS  PubMed  Google Scholar 

  52. Lacey H, Haigh T, Westwood M, Aplin JD. Mesenchymally-derived insulin-like growth factor 1 provides a paracrine stimulus for trophoblast migration. BMC Dev Biol. 2002;2:5.

    PubMed  PubMed Central  Google Scholar 

  53. Lash GE, Warren AY, Underwood S, Baker PN. Vascular endothelial growth factor is a chemoattractant for trophoblast cells. Placenta. 2003;24:549–56.

    CAS  PubMed  Google Scholar 

  54. Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol. 2002;160:1405–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wakeland AK, Soncin F, Moretto-Zita M, Chang C-W, Horii M, Pizzo D, et al. Hypoxia directs human extravillous trophoblast differentiation in a hypoxia-inducible factor–dependent manner. Am J Pathol. 2017;187:767–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. James JL, Stone PR, Chamley LW. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update. 2006;12:137–44.

    CAS  PubMed  Google Scholar 

  57. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ 3. J Clin Invest. 2000;105:577–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science (80- ). 1997;277:1669–72.

    CAS  Google Scholar 

  59. Zhang Y, Zhao H, Xia X, Diao F, Ma X, Wang J, et al. Hypoxia-induced and HIF1α-VEGF-mediated tight junction dysfunction in choriocarcinoma cells: implications for preeclampsia. Clin Chim Acta. 2019;489:203–11.

    CAS  PubMed  Google Scholar 

  60. Maître J-L, Heisenberg C-P. Three functions of cadherins in cell adhesion. Curr Biol. 2013;23:R626–33.

    PubMed  PubMed Central  Google Scholar 

  61. Yap AS, Crampton MS, Hardin J. Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol. 2007;19:508–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown LM, Lacey HA, Baker PN, Crocker IP. E-cadherin in the assessment of aberrant placental cytotrophoblast turnover in pregnancies complicated by pre-eclampsia. Histochem Cell Biol. 2005;124:499–506.

    CAS  PubMed  Google Scholar 

  63. Davies JE, Pollheimer J, Yong HEJ, Kokkinos MI, Knöfler M, Murthi P, et al. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adhes Migr. 2016;10:310–21.

    Google Scholar 

  64. Pereira L. Congenital viral infection: traversing the uterine-placental interface. Annu Rev Virol. 2018;5:273–99.

    CAS  PubMed  Google Scholar 

  65. Floridon C, Nielsen O, Hølund B, Sunde L, Westergaard JG, Thomsen SG, et al. Localization of E-cadherin in villous, extravillous and vascular trophoblasts during intrauterine, ectopic and molar pregnancy. MHR Basic Sci Reprod Med. 2000;6:943–50.

    CAS  Google Scholar 

  66. Batistatou A, Makrydimas G, Zagorianakou N, Zagorianakou P, Nakanishi Y, Agnantis NJ, et al. Expression of dysadherin and E-cadherin in trophoblastic tissue in normal and abnormal pregnancies. Placenta. 2007;28:590–2.

    CAS  PubMed  Google Scholar 

  67. Aghababaei M, Hogg K, Perdu S, Robinson WP, Beristain AG. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ. 2015;22:1970–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Verma S, Kang AK, Pal R, Gupta SK. BST2 regulates interferon gamma-dependent decrease in invasion of HTR-8/SVneo cells via STAT1 and AKT signaling pathways and expression of E-cadherin. Cell Adhes Migr. 2020;14:24–41.

    Google Scholar 

  69. Li XL, Dong X, Xue Y, Li CF, Gou WL, Chen Q. Increased expression levels of E-cadherin, cytokeratin 18 and 19 observed in preeclampsia were not correlated with disease severity. Placenta. 2014;35:625–31.

    PubMed  Google Scholar 

  70. Multhaup A, Huppertz B, Göhner C, Böhringer M, Mai M, Markert U, et al. N-cadherin knockdown leads to disruption of trophoblastic and endothelial cell interaction in a 3D cell culture model–new insights in trophoblast invasion failure. Cell Adhes Migr. 2018;12:259–70.

    CAS  Google Scholar 

  71. Şahin H, Akpak YK, Berber U, Gün İ, Demirel D, Ergür AR. Expression of P-cadherin (cadherin-3) and E-selectin in the villous trophoblast of first trimester human placenta. J Turk Ger Gynecol Assoc. 2014;15:13–7.

    PubMed  PubMed Central  Google Scholar 

  72. Dubernard G, Galtier-Fougairolles M, Cortez A, Uzan S, Challier JC. Immunohistochemistry of adhesion molecules, metalloproteinases and NO-synthases in extravillous trophoblast of tubal pregnancy. Cell Mol Biol (Noisy-Le-Grand). 2005;51:OL829–37.

    CAS  Google Scholar 

  73. Tossetta G, Paolinelli F, Avellini C, Salvolini E, Ciarmela P, Lorenzi T, et al. IL-1β and TGF-β weaken the placental barrier through destruction of tight junctions: an in vivo and in vitro study. Placenta. 2014;35:509–16.

    CAS  PubMed  Google Scholar 

  74. Bulla R, Villa A, Bossi F, Cassetti A, Radillo O, Spessotto P, et al. VE-cadherin is a critical molecule for trophoblast–endothelial cell interaction in decidual spiral arteries. Exp Cell Res. 2005;303:101–13.

    CAS  PubMed  Google Scholar 

  75. Cheng J-C, Chang H-M, Leung PCK. Transforming growth factor-β1 inhibits trophoblast cell invasion by inducing Snail-mediated down-regulation of vascular endothelial-cadherin protein. J Biol Chem. 2013;288:33181–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao J, Gu Y, Fan R, Groome LJ, Wang Y. Factors derived from preeclamptic placentas perturb polarity protein PARD-3 expression and distribution in endothelial cells. Reprod Sci. 2011;18:164–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gu Y, Groome LJ, Alexander JS, Wang Y. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia. Placenta. 2012;33:803–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aplin JD, Jones CJP, Harris LK. Adhesion molecules in human trophoblast–a review. I. Villous trophoblast. Placenta. 2009;30:293–8.

    CAS  PubMed  Google Scholar 

  79. Getsios S, MacCalman CD. Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro. Dev Biol. 2003;257:41–54.

    CAS  PubMed  Google Scholar 

  80. Maccalman CD, Getsios S, Chen GTC. Type 2 cadherins in the human endometrium and placenta: their putative roles in human implantation and placentation. Am J Reprod Immunol. 1998;39:96–107.

    CAS  PubMed  Google Scholar 

  81. Chen GTC, Getsios S, MacCalman CD. Cadherin-11 is a hormonally regulated cellular marker of decidualization in human endometrial stromal cells. Mol Reprod Dev. 1999;52:158–65.

    CAS  PubMed  Google Scholar 

  82. Beham A, Denk H, Desoye G. The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta. 1988;9:479–92.

    CAS  PubMed  Google Scholar 

  83. Douglas GC, King BF. Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J Cell Sci. 1990;96:131–41.

    PubMed  Google Scholar 

  84. Bouillot S, Tillet E, Carmona G, Prandini M-H, Gauchez A-S, Hoffmann P, et al. Protocadherin-12 cleavage is a regulated process mediated by ADAM10 protein evidence of shedding up-regulation in pre-eclampsia. J Biol Chem. 2011;286:15195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Coukos G, Makrigiannakis A, Amin K, Albelda SM, Coutifaris C. Platelet-endothelial cell adhesion molecule-1 is expressed by a subpopulation of human trophoblasts: a possible mechanism for trophoblast-endothelial interaction during haemochorial placentation. Mol Hum Reprod. 1998;4:357–67.

    CAS  PubMed  Google Scholar 

  86. Erol AYG, Nazli M, Yildiz SE. Significance of platelet endothelial cell adhesion molecule-1 (PECAM-1) and intercellular adhesion molecule-1 (ICAM-1) expressions in preeclamptic placentae. Endocrine. 2012;42:125–31.

    CAS  Google Scholar 

  87. Lyall F, Bulmer JN, Duffie E, Cousins F, Theriault A, Robson SC. Human trophoblast invasion and spiral artery transformation: the role of PECAM-1 in normal pregnancy, preeclampsia, and fetal growth restriction. Am J Pathol. 2001;158:1713–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mjnenborg R, Vercruysse L, Verbist L, Van Assche FA. Interaction of interstitial trophoblast with placental bed capillaries and venules of normotensive and pre-eclamptic pregnancies. Placenta. 1998;19:569–75.

    Google Scholar 

  89. Pröll J, Blaschitz A, Hartmann M, Thalhamer J, Dohr G. Human first-trimester placenta intra-arterial trophoblast cells express the neural cell adhesion molecule. Early Pregnancy. 1996;2:271–5.

    PubMed  Google Scholar 

  90. Burrows TD, King A, Loke YW. Expression of adhesion molecules by endovascular trophoblast and decidual endothelial cells: implications for vascular invasion during implantation. Placenta. 1994;15:21–33.

    CAS  PubMed  Google Scholar 

  91. Ma L, Li G, Cao G, Zhu Y, Du M, Zhao Y, et al. dNK cells facilitate the interaction between trophoblastic and endothelial cells via VEGF-C and HGF. Immunol Cell Biol. 2017;95:695–704.

    CAS  PubMed  Google Scholar 

  92. Higuchi T, Fujiwara H, Egawa H, Sato Y, Yoshioka S, Tatsumi K, et al. Cyclic AMP enhances the expression of an extravillous trophoblast marker, melanoma cell adhesion molecule, in choriocarcinoma cell JEG3 and human chorionic villous explant cultures. Mol Hum Reprod. 2003;9:359–66.

    CAS  PubMed  Google Scholar 

  93. Shih I-M, Kurman RJ. Expression of melanoma cell adhesion molecule in intermediate trophoblast. Lab Investig. 1996;75:377–88.

    CAS  PubMed  Google Scholar 

  94. Shih I, Wang T, Wu T, Kurman RJ, Gearhart JD. Expression of Mel-CAM in implantation site intermediate trophoblastic cell line, IST-1, limits its migration on uterine smooth muscle cells. J Cell Sci. 1998;111:2655–64.

    CAS  PubMed  Google Scholar 

  95. Gaffuri B, Vigano P, Nozza A, Gornati G, Di Blasio AM, Vignali M. Expression of intercellular adhesion molecule-1 messenger ribonucleic acid and protein in human term placental cells and its modulation by pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor α). Biol Reprod. 1998;58:1003–8.

    CAS  PubMed  Google Scholar 

  96. Labarrere CA, Hardin JW, Haas DM, Kassab GS. Chronic villitis of unknown etiology and massive chronic intervillositis have similar immune cell composition. Placenta. 2015;36:681–6.

    CAS  PubMed  Google Scholar 

  97. Zhao M, Yin Y, Wei J, Wu M, Yang C, Chen Q. Trophoblastic debris extruded from hydatidiform molar placentae activates endothelial cells: possible relevance to the pathogenesis of preeclampsia. Placenta. 2016;45:42–9.

    CAS  PubMed  Google Scholar 

  98. Chen Q, Guo F, Hensby-Bennett S, Stone P, Chamley L. Antiphospholipid antibodies prolong the activation of endothelial cells induced by necrotic trophoblastic debris: implications for the pathogenesis of preeclampsia. Placenta. 2012;33:810–5.

    CAS  PubMed  Google Scholar 

  99. Chen Q, Guo F, Liu S, Xiao J, Wang C, Snowise S, et al. Calcium channel blockers prevent endothelial cell activation in response to necrotic trophoblast debris: possible relevance to pre-eclampsia. Cardiovasc Res. 2012;96:484–93.

    CAS  PubMed  Google Scholar 

  100. Shen F, Wei J, Snowise S, DeSousa J, Stone P, Viall C, et al. Trophoblast debris extruded from preeclamptic placentae activates endothelial cells: a mechanism by which the placenta communicates with the maternal endothelium. Placenta. 2014;35:839–47.

    CAS  PubMed  Google Scholar 

  101. Chen Q, Stone PR, McCowan LME, Chamley LW. Activated endothelial cells resist displacement by trophoblast in vitro. Placenta. 2007;28:743–7.

    CAS  PubMed  Google Scholar 

  102. Labarrere CA, DiCarlo HL, Bammerlin E, Hardin JW, Kim YM, Chaemsaithong P, et al. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta. Am J Obstet Gynecol. 2017;216:287.e1–287.e16.

    Google Scholar 

  103. Heřman J, Rob L, Robová H, Drochýtek V, Hruda M, Pichlík T, et al. Histopathological and clinical features of molar pregnancy. Ceska Gynekol. 2019;84:418.

    PubMed  Google Scholar 

  104. Stubert J, Szewczyk M, Spitschak A, Knoll S, Richter D-U, Pützer BM. Adenoviral mediated expression of anti-inflammatory progranulin by placental explants modulates endothelial cell activation by decrease of ICAM-1 expression. Placenta. 2020;90:109–17.

    CAS  PubMed  Google Scholar 

  105. Cox AG, Gurusinghe S, Rahman RA, Leaw B, Chan ST, Mockler JC, et al. Sulforaphane improves endothelial function and reduces placental oxidative stress in vitro. Pregnancy Hypertens. 2019;16:1–10.

    PubMed  Google Scholar 

  106. Gurusinghe S, Cox AG, Rahman R, Chan ST, Muljadi R, Singh H, et al. Resveratrol mitigates trophoblast and endothelial dysfunction partly via activation of nuclear factor erythroid 2-related factor-2. Placenta. 2017;60:74–85.

    CAS  PubMed  Google Scholar 

  107. Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell–cell adhesion. J Cell Sci. 2012;125:3713–22.

    CAS  PubMed  Google Scholar 

  108. Ikeda W, Nakanishi H, Miyoshi J, Mandai K, Ishizaki H, Tanaka M, et al. Afadin: a key molecule essential for structural organization of cell–cell junctions of polarized epithelia during embryogenesis. J Cell Biol. 1999;146:1117–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Reymond N, Fabre S, Lecocq E, Adelaïde J, Dubreuil P, Lopez M. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem. 2001;276:43205–15.

    CAS  PubMed  Google Scholar 

  110. Ito M, Nishizawa H, Tsutsumi M, Kato A, Sakabe Y, Noda Y, et al. Potential role for nectin-4 in the pathogenesis of pre-eclampsia: a molecular genetic study. BMC Med Genet. 2018;19:166.

    PubMed  PubMed Central  Google Scholar 

  111. Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9:263–8.

    CAS  PubMed  Google Scholar 

  112. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science (80- ). 2003;299:405–8.

    CAS  Google Scholar 

  113. Prakobphol A, Genbacev O, Gormley M, Kapidzic M, Fisher SJ. A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta. Dev Biol. 2006;298:107–17.

    CAS  PubMed  Google Scholar 

  114. Campbell S, Swann HR, Seif MW, Kimber SJ, Aplin JD. Integrins and adhesion mlecules: cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod. 1995;10:1571–8.

    CAS  PubMed  Google Scholar 

  115. Zhou Y, Genbacev O, Fisher SJ. The human placenta remodels the uterus by using a combination of molecules that govern vasculogenesis or leukocyte extravasation. Ann N Y Acad Sci. 2003;995:73–83.

    CAS  PubMed  Google Scholar 

  116. James JL, Cartwright JE, Whitley GS, Greenhill DR, Hoppe A. The regulation of trophoblast migration across endothelial cells by low shear stress: consequences for vascular remodelling in pregnancy. Cardiovasc Res. 2012;93:152–61.

    CAS  PubMed  Google Scholar 

  117. Feng Y, Ma X, Deng L, Yao B, Xiong Y, Wu Y, et al. Role of selectins and their ligands in human implantation stage. Glycobiology. 2017;27:385–91.

    CAS  PubMed  Google Scholar 

  118. King A, Loke YW. Differential expression of blood-group-related carbohydrate antigens by trophoblast subpopulations. Placenta. 1988;9:513–21.

    CAS  PubMed  Google Scholar 

  119. Wang Y, Zhang X, Cheng GM, Ren CC. Expression of transforming growth factor-beta 1, vascular cell adhesion molecule-1 and endothelium-selectin in placenta of patients with pre-eclampsia. Zhonghua Fu Chan Ke Za Zhi. 2006;41:514–7.

    PubMed  Google Scholar 

  120. Xu B, Charlton F, Makris A, Hennessy A. Nitric oxide (NO) reversed TNF-α inhibition of trophoblast interaction with endothelial cellular networks. Placenta. 2014;35:417–21.

    CAS  PubMed  Google Scholar 

  121. Jeschke U, Toth B, Scholz C, Friese K, Makrigiannakis A. Glycoprotein and carbohydrate binding protein expression in the placenta in early pregnancy loss. J Reprod Immunol. 2010;85:99–105.

    CAS  PubMed  Google Scholar 

  122. Eskicioglu F, Lacin S, Ozbilgin K, Kose C. The role of selectins in the first trimester pregnancy loss. Ginekol Pol. 2014;85.

  123. Zenclussen AC, Fest S, Sehmsdorf U-S, Hagen E, Klapp BF, Arck PC. Upregulation of decidual P-selectin expression is associated with an increased number of Th1 cell populations in patients suffering from spontaneous abortions. Cell Immunol. 2001;213:94–103.

    CAS  PubMed  Google Scholar 

  124. Harada M, Kondoh M, Masuyama A, Fujii M, Nakanishi T, Utoguchi N, et al. Effect of forskolin on the expression of claudin-5 in human trophoblast BeWo cells. Die Pharm Int J Pharm Sci. 2007;62:291–4.

    CAS  Google Scholar 

  125. Pirinen E, Soini Y. A survey of zeb1, twist and claudin 1 and 4 expression during placental development and disease. Apmis. 2014;122:530–8.

    CAS  PubMed  Google Scholar 

  126. Schumann S, Buck VU, Classen-Linke I, Wennemuth G, Grümmer R. Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human. Histochem Cell Biol. 2015;144:571–85.

    CAS  PubMed  Google Scholar 

  127. Miranda J, Martín-Tapia D, Valdespino-Vázquez Y, Alarcón L, Espejel-Nuñez A, Guzmán-Huerta M, et al. Syncytiotrophoblast of placentae from women with Zika virus infection has altered tight junction protein expression and increased paracellular permeability. Cells. 2019;8:1174.

    CAS  PubMed Central  Google Scholar 

  128. Liévano S, Alarcón L, Chávez-Munguía B, González-Mariscal L. Endothelia of term human placentae display diminished expression of tight junction proteins during preeclampsia. Cell Tissue Res. 2006;324:433–48.

    PubMed  Google Scholar 

  129. Challier JC, Dubernard G, Galtier M, Bintein T, Vervelle C, Raison D, et al. Junctions and adhesion molecules in first trimester and term human placentas. Cell Mol Biol (Noisy-Le-Grand). 2005;51:OL713–22.

    CAS  Google Scholar 

  130. Angelow S, Alan SL. Claudins and paracellular transport: an update. Curr Opin Nephrol Hypertens. 2007;16:459–64.

    CAS  PubMed  Google Scholar 

  131. Hu Y, Blair JD, Yuen RKC, Robinson WP, von Dadelszen P. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity. Mhr Basic Sci Reprod Med. 2015;21:452–65.

    CAS  Google Scholar 

  132. Jauniaux E, Collins S, Burton GJ. Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol. 2018;218:75–87.

    PubMed  Google Scholar 

  133. Bartels HC, Postle JD, Downey P, Brennan DJ. Placenta accreta spectrum: a review of pathology, molecular biology, and biomarkers. Dis Markers. 2018;2018:1–11.

    Google Scholar 

  134. Jauniaux E, Moffett A, Burton GJ. Placental implantation disorders. Obstet Gynecol Clin N Am. 2020;47:117–32.

    Google Scholar 

  135. Sun L, Mao D, Cai Y, Tan W, Hao Y, Li L, et al. Association between higher expression of interleukin-8 (IL-8) and haplotype− 353A/− 251A/+ 678T of IL-8 gene with preeclampsia: a case–control study. Medicine (Baltimore). 2016;95:e5537.

    CAS  Google Scholar 

  136. DaSilva-Arnold S, James JL, Al-Khan A, Zamudio S, Illsley NP. Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial–mesenchymal transition. Placenta. 2015;36:1412–8.

    CAS  PubMed  Google Scholar 

  137. Marzioni D, Banita M, Felici A, Paradinas FJ, Newlands E, De Nictolis M, et al. Expression of ZO-1 and occludin in normal human placenta and in hydatidiform moles. Mol Hum Reprod. 2001;7:279–85.

    CAS  PubMed  Google Scholar 

  138. Li J, Zhou J, Tian B, Chu Y, Zhang N, Hu X, et al. Activation of HO-1 protects placental cells function in oxidative stress via regulating ZO-1/occludin. Biochem Biophys Res Commun. 2019;511:903–9.

    CAS  PubMed  Google Scholar 

  139. Apps R, Sharkey A, Gardner L, Male V, Trotter M, Miller N, et al. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta. 2011;32:33–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pidoux G, Gerbaud P, Gnidehou S, Grynberg M, Geneau G, Guibourdenche J, et al. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Physiol. 2010;298:C1517–26.

    CAS  Google Scholar 

  141. Knyazev EN, Petrov VA, Gazizov IN, Gerasimenko TN, Tsypina IM, Tonevitsky AG, et al. Oxyquinoline-dependent changes in claudin-encoding genes contribute to impairment of the barrier function of the Trophoblast monolayer. Bull Exp Biol Med. 2019;166:369–72.

    CAS  PubMed  Google Scholar 

  142. Nishimura T, Dunk C, Lu Y, Feng X, Gellhaus A, Winterhager E, et al. Gap junctions are required for trophoblast proliferation in early human placental development. Placenta. 2004;25:595–607.

    CAS  PubMed  Google Scholar 

  143. Sood A, Salih S, Roh D, Lacharme-Lora L, Parry M, Hardiman B, et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol. 2011;6:824–33.

    CAS  PubMed  Google Scholar 

  144. Winterhager E, Kidder GM. Gap junction connexins in female reproductive organs: implications for women’s reproductive health. Hum Reprod Update. 2015;21:340–52.

    CAS  PubMed  Google Scholar 

  145. Winterhager E, Von Ostau C, Gerke M, Gruemmer R, Traub O, Kaufmann P. Connexin expression patterns in human trophoblast cells during placental development. Placenta. 1999;20:627–38.

    CAS  PubMed  Google Scholar 

  146. Enders AC, Blankenship TN, Fazleabas AT, Jones CJP. Structure of anchoring villi and the trophoblastic shell in the human, baboon and macaque placenta. Placenta. 2001;22:284–303.

    CAS  PubMed  Google Scholar 

  147. Wright JK, Dunk CE, Perkins JE, Winterhager E, Kingdom JCP, Lye SJ. EGF modulates trophoblast migration through regulation of Connexin 40. Placenta. 2006;27:114–21.

    Google Scholar 

  148. Peng Q, Yue C, Chen ACH, Lee KC, Fong SW, Yeung WSB, et al. Connexin 43 is involved in early differentiation of human embryonic stem cells. Differentiation. 2019;105:33–44.

    CAS  PubMed  Google Scholar 

  149. Dunk CE, Gellhaus A, Drewlo S, Baczyk D, Pötgens AJG, Winterhager E, et al. The molecular role of connexin 43 in human trophoblast cell fusion. Biol Reprod. 2012;86:111–5.

    Google Scholar 

  150. Al-Lamki RS, Skepper JN, Burton GJ. Are human placental bed giant cells merely aggregates of small mononuclear trophoblast cells? An ultrastructural and immunocytochemical study. Hum Reprod. 1999;14:496–504.

    CAS  PubMed  Google Scholar 

  151. Wang R, Yu R, Zhu C, Lin H-Y, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;11:967–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Dukic AR, Gerbaud P, Guibourdenche J, Thiede B, Taskén K, Pidoux G. Ezrin-anchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication, and cell fusion. Biochem J. 2018;475:455–76.

    CAS  PubMed  Google Scholar 

  153. Clemente L, Boeldt DS, Grummer MA, Morita M, Morgan TK, Wiepz GJ, et al. Adenoviral transduction of EGFR into pregnancy-adapted uterine artery endothelial cells remaps growth factor induction of endothelial dysfunction. Mol Cell Endocrinol. 2020;499:110590.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2018 YFC1004401) and the National Natural Science Foundation of China (Grant No. 81671493).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enoch Appiah Adu-Gyamfi, Yu-Bin Ding or Ying-Xiong Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Consents

Ethical consents are not applicable to this study since the study did not involve animal and human subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was updated to correct a spacing problem in the caption of Figure 2 and to delete the word “preeclamptic” in the first sentence of the second paragraph on page 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adu-Gyamfi, E.A., Czika, A., Gorleku, P.N. et al. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod. Sci. 28, 305–320 (2021). https://doi.org/10.1007/s43032-020-00364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00364-7

Keywords

Navigation