Skip to main content

Advertisement

Log in

Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Karsch FJ. Central actions of ovarian steroids in the feedback regulation of pulsatile secretion of luteinizing hormone. Annu Rev Physiol. 1987;49(1):365–82. https://doi.org/10.1146/annurev.ph.49.030187.002053.

    Article  CAS  PubMed  Google Scholar 

  2. Spergel DJ. Modulation of gonadotropin-releasing hormone neuron activity and secretion in mice by non-peptide neurotransmitters, gasotransmitters, and gliotransmitters. Front Endocrinol (Lausanne). 2019;10:329. https://doi.org/10.3389/fendo.2019.00329.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology. 2005;146(10):4431–6. https://doi.org/10.1210/en.2005-0195.

    Article  CAS  PubMed  Google Scholar 

  4. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci. 2006;26(25):6687. https://doi.org/10.1523/JNEUROSCI.1618-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CVR, Jafarzadehshirazi MR, et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology. 2007;148(12):5752–60. https://doi.org/10.1210/en.2007-0961.

    Article  CAS  PubMed  Google Scholar 

  6. Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010;151(8):3479–89. https://doi.org/10.1210/en.2010-0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009;29(38):11859. https://doi.org/10.1523/JNEUROSCI.1569-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herbison AE. The gonadotropin-releasing hormone pulse generator. Endocrinology. 2018;159(11):3723–36. https://doi.org/10.1210/en.2018-00653.

    Article  CAS  PubMed  Google Scholar 

  9. Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol. 2016;12(8):452–66. https://doi.org/10.1038/nrendo.2016.70.

    Article  CAS  PubMed  Google Scholar 

  10. Nagae M, Uenoyama Y, Okamoto S, Tsuchida H, Ikegami K, Goto T, et al. Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proc Natl Acad Sci U S A. 2021;118(5):e2009156118. https://doi.org/10.1073/pnas.2009156118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front Endocrinol (Lausanne). 2021;12:724632. https://doi.org/10.3389/fendo.2021.724632.

    Article  PubMed  Google Scholar 

  12. Wang L, Moenter SM. Differential roles of hypothalamic AVPV and arcuate kisspeptin neurons in estradiol feedback regulation of female reproduction. Neuroendocrinology. 2020;110(3–4):172–84. https://doi.org/10.1159/000503006.

    Article  CAS  PubMed  Google Scholar 

  13. Herbison AE. A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Front Neuroendocrinol. 2020;57:100837. https://doi.org/10.1016/j.yfrne.2020.100837.

    Article  CAS  PubMed  Google Scholar 

  14. Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A. 2007;104(25):10714. https://doi.org/10.1073/pnas.0704114104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003;312(4):1357–63. https://doi.org/10.1016/j.bbrc.2003.11.066.

    Article  CAS  PubMed  Google Scholar 

  16. Yang JJ, Caligioni CS, Chan Y-M, Seminara SB. Uncovering novel reproductive defects in neurokinin B receptor null mice: closing the gap between mice and men. Endocrinology. 2012;153(3):1498–508. https://doi.org/10.1210/en.2011-1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Roux N, Genin E, Carel J-C, Matsuda F, Chaussain J-L, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100(19):10972. https://doi.org/10.1073/pnas.1834399100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. George JT, Seminara SB. Kisspeptin and the Hypothalamic control of reproduction: lessons from the human. Endocrinology. 2012;153(11):5130–6. https://doi.org/10.1210/en.2012-1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanchate NK, Parkash J, Bellefontaine N, Mazur D, Colledge WH, Anglemont de Tassigny X, et al. Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J Neurosci. 2012;32(3):932. https://doi.org/10.1523/JNEUROSCI.4765-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prashar V, Arora T, Singh R, Sharma A, Parkash J. Interplay of KNDy and nNOS neurons: a new possible mechanism of GnRH secretion in the adult brain. Reprod Biol. 2021;21(4):100558. https://doi.org/10.1016/j.repbio.2021.100558.

    Article  CAS  PubMed  Google Scholar 

  21. Bellefontaine N, Hanchate NK, Parkash J, Campagne C, de Seranno S, Clasadonte J, et al. Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology. 2011;93(2):74–89. https://doi.org/10.1159/000324147.

    Article  CAS  PubMed  Google Scholar 

  22. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27. https://doi.org/10.1056/NEJMoa035322.

    Article  CAS  PubMed  Google Scholar 

  23. Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology. 2006;147(3):1154–8. https://doi.org/10.1210/en.2005-1282.

    Article  CAS  PubMed  Google Scholar 

  24. Topaloglu A, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet. 2009;41(3):354–8. https://doi.org/10.1038/ng.306.

    Article  CAS  PubMed  Google Scholar 

  25. Wakabayashi Y, Nakada T, Murata K, Ohkura S, Mogi K, Navarro VM, et al. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci. 2010;30(8):3124. https://doi.org/10.1523/JNEUROSCI.5848-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ikegami K, Minabe S, Ieda N, Goto T, Sugimoto A, Nakamura S, et al. Evidence of involvement of neurone-glia/neurone-neurone communications via gap junctions in synchronised activity of KNDy neurones. J Neuroendocrinol. 2017;29:6. https://doi.org/10.1111/jne.12480.

    Article  CAS  Google Scholar 

  27. Ikegami K, Watanabe Y, Nakamura S, Goto T, Inoue N, Uenoyama Y, et al. Cellular and molecular mechanisms regulating the KNDy neuronal activities to generate and modulate GnRH pulse in mammals. Front Neuroendocrinol. 2021;64:100968. https://doi.org/10.1016/j.yfrne.2021.100968.

    Article  CAS  PubMed  Google Scholar 

  28. Casoni F, Malone SA, Belle M, Luzzati F, Collier F, Allet C, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development. 2016;143(21):3969. https://doi.org/10.1242/dev.139444.

    Article  CAS  PubMed  Google Scholar 

  29. Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989;338:161. https://doi.org/10.1038/338161a0.

    Article  CAS  PubMed  Google Scholar 

  30. Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A. 1989;86(20):8132–6. https://doi.org/10.1073/pnas.86.20.8132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci. 2011;31(18):6915–27. https://doi.org/10.1523/JNEUROSCI.6087-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho H-J, Shan Y, Whittington NC, Wray S. Nasal placode development, GnRH neuronal migration and Kallmann syndrome. Front Cell Dev Biol. 2019;7:121. https://doi.org/10.3389/fcell.2019.00121.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, et al. The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet. 2004;13(22):2781–91. https://doi.org/10.1093/hmg/ddh309.

    Article  CAS  PubMed  Google Scholar 

  34. Pellegrino G, Martin M, Allet C, Lhomme T, Geller S, Franssen D, et al. GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat Neurosci. 2021;24(12):1660–72. https://doi.org/10.1038/s41593-021-00960-z.

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell AL, Dwyer A, Pitteloud N, Quinton R. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol Metab. 2011;22(7):249–58. https://doi.org/10.1016/j.tem.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  36. Jasoni Christine L, Porteous Robert W, Herbison Allan E. Anatomical location of mature GnRH neurons corresponds with their birthdate in the developing mouse. Dev Dyn. 2009;238(3):524–31. https://doi.org/10.1002/dvdy.21869.

    Article  CAS  PubMed  Google Scholar 

  37. Gibson MJ, Ingraham L, Dobrjansky A. Soluble Factors guide gonadotropin-releasing hormone axonal targeting to the median eminence*. Endocrinology. 2000;141(9):3065–71. https://doi.org/10.1210/endo.141.9.7656.

    Article  CAS  PubMed  Google Scholar 

  38. Herde M, Iremonger K, Constantin S, Herbison A. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci. 2013;33:12689–97. https://doi.org/10.1523/JNEUROSCI.0579-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moore AM, Prescott M, Czieselsky K, Desroziers E, Yip SH, Campbell RE, et al. Synaptic innervation of the GnRH neuron distal dendron in female mice. Endocrinology. 2018;159(9):3200–8. https://doi.org/10.1210/en.2018-00505.

    Article  CAS  PubMed  Google Scholar 

  40. Ohkura S, Uenoyama Y, Yamada S, Homma T, Takase K, Inoue N, et al. Physiological role of metastin/kisspeptin in regulating gonadotropin-releasing hormone (GnRH) secretion in female rats. Peptides. 2009;30(1):49–56. https://doi.org/10.1016/j.peptides.2008.08.004.

    Article  CAS  PubMed  Google Scholar 

  41. Han S-K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349. https://doi.org/10.1523/JNEUROSCI.3328-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith JT, Li Q, Yap KS, Shahab M, Roseweir AK, Millar RP, et al. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology. 2011;152(3):1001–12. https://doi.org/10.1210/en.2010-1225.

    Article  CAS  PubMed  Google Scholar 

  43. Merkley CM, Coolen LM, Goodman RL, Lehman MN. Evidence for changes in numbers of synaptic inputs onto KNDy and GnRH neurones during the preovulatory LH surge in the ewe. J Neuroendocrinol. 2015;27(7):624–35. https://doi.org/10.1111/jne.12293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goodman RL, Hileman SM, Nestor CC, Porter KL, Connors JM, Hardy SL, et al. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology. 2013;154(11):4259–69. https://doi.org/10.1210/en.2013-1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yip SH, Boehm U, Herbison AE, Campbell RE. Conditional viral tract tracing delineates the projections of the distinct kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse. Endocrinology. 2015;156(7):2582–94. https://doi.org/10.1210/en.2015-1131.

    Article  CAS  PubMed  Google Scholar 

  46. Yeo S-H, Herbison AE. Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology. 2011;152(6):2387–99. https://doi.org/10.1210/en.2011-0164.

    Article  CAS  PubMed  Google Scholar 

  47. True C, Kirigiti M, Ciofi P, Grove KL, Smith MS. Characterisation of arcuate nucleus kisspeptin/neurokinin B neuronal projections and regulation during lactation in the rat. J Neuroendocrinol. 2011;23(1):52–64. https://doi.org/10.1111/j.1365-2826.2010.02076.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsuyama S, Ohkura S, Mogi K, Wakabayashi Y, Mori Y, Tsukamura H, et al. Morphological evidence for direct interaction between kisspeptin and gonadotropin-releasing hormone neurons at the median eminence of the male goat: an immunoelectron microscopic study. Neuroendocrinol. 2011;94(4):323–32.

    Article  CAS  Google Scholar 

  49. Uenoyama Y, Inoue N, Pheng V, Homma T, Takase K, Yamada S, et al. Ultrastructural evidence of kisspeptin-gonadotrophin-releasing hormone (GnRH) interaction in the median eminence of female rats: implication of axo-axonal regulation of GnRH release. J Neuroendocrinol. 2011;23(10):863–70. https://doi.org/10.1111/j.1365-2826.2011.02199.x.

    Article  CAS  PubMed  Google Scholar 

  50. Hrabovszky E, Steinhauser Ar, Barabás K, Shughrue PJ, Petersen SL, Merchenthaler In, et al. Estrogen receptor -β immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology. 2001;142(7):3261–4. https://doi.org/10.1210/endo.142.7.8176.

  51. Oakley AE, Clifton DK, Steiner RA. Kisspeptin Signaling in the brain. Endocr Rev. 2009;30(6):713–43. https://doi.org/10.1210/er.2009-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Knobil E, Plant TM, Wildt L, Belchetz PE, Marshall G. Control of the rhesus monkey menstrual cycle: permissive role of hypothalamic gonadotropin-releasing hormone. Science. 1980;207(4437):1371.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar D, Candlish M, Periasamy V, Avcu N, Mayer C, Boehm U. Specialized subpopulations of kisspeptin neurons communicate with GnRH neurons in female mice. Endocrinology. 2015;156(1):32–8. https://doi.org/10.1210/en.2014-1671.

    Article  CAS  PubMed  Google Scholar 

  54. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102(5):1761. https://doi.org/10.1073/pnas.0409330102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of kiss1 gene expression in the brain of the female mouse. Endocrinol. 2005;146(9):3686–92. https://doi.org/10.1210/en.2005-0488.

    Article  CAS  Google Scholar 

  56. Dubois SL, Acosta-Martínez M, DeJoseph MR, Wolfe A, Radovick S, Boehm U, et al. Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinol. 2015;156(3):1111–20. https://doi.org/10.1210/en.2014-1851.

    Article  CAS  Google Scholar 

  57. Greenwald-Yarnell ML, Marsh C, Allison MB, Patterson CM, Kasper C, MacKenzie A, et al. ERα in Tac2 neurons regulates puberty onset in female mice. Endocrinol. 2016;157(4):1555–65. https://doi.org/10.1210/en.2015-1928.

    Article  CAS  Google Scholar 

  58. Tomikawa J, Uenoyama Y, Ozawa M, Fukanuma T, Takase K, Goto T, et al. Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proc Natl Acad Sci U S A. 2012;109(20):E1294. https://doi.org/10.1073/pnas.1114245109.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Uenoyama Y, Tomikawa J, Inoue N, Goto T, Minabe S, Ieda N, et al. Molecular and epigenetic mechanism regulating hypothalamic kiss1 gene expression in mammals. Neuroendocrinol. 2016;103(6):640–9. https://doi.org/10.1159/000445207.

    Article  CAS  Google Scholar 

  60. Yeo S-H, Herbison AE. Estrogen-negative feedback and estrous cyclicity are critically dependent upon estrogen receptor-α expression in the arcuate nucleus of adult female mice. Endocrinol. 2014;155(8):2986–95. https://doi.org/10.1210/en.2014-1128.

    Article  CAS  Google Scholar 

  61. Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 Messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinol. 2007;148(3):1150–7. https://doi.org/10.1210/en.2006-1435.

    Article  CAS  Google Scholar 

  62. Qiu J, Rivera HM, Bosch MA, Padilla SL, Stincic TL, Palmiter RD, et al. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. Elife. 2018;7:e35656. https://doi.org/10.7554/eLife.35656.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol. 2022;23:e13145. https://doi.org/10.1111/jne.13145.

    Article  CAS  Google Scholar 

  64. Lin X-H, Lass G, Kong L-S, Wang H, Li X-F, Huang H-F, et al. Optogenetic activation of arcuate kisspeptin neurons generates a luteinizing hormone surge-like secretion in an estradiol-dependent manner. Front Endocrinol (Lausanne). 2021. https://doi.org/10.3389/fendo.2021.775233.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stincic TL, Qiu J, Connors AM, Kelly MJ, Rønnekleiv OK. Arcuate and preoptic kisspeptin neurons exhibit differential projections to hypothalamic nuclei and exert opposite postsynaptic effects on hypothalamic paraventricular and dorsomedial nuclei in the female mouse. eNeuro. 2021;8:4. https://doi.org/10.1523/eneuro.0093-21.2021.

    Article  CAS  Google Scholar 

  66. Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE, et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 2019;29(5):1232. https://doi.org/10.1016/j.cmet.2019.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clarkson J, D’Anglemont De Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol. 2009;21(8):673–82. https://doi.org/10.1111/j.1365-2826.2009.01892.x.

    Article  CAS  PubMed  Google Scholar 

  68. Matsuda F, Nakatsukasa K, Suetomi Y, Naniwa Y, Ito D, Inoue N, et al. The luteinising hormone surge-generating system is functional in male goats as in females: involvement of kisspeptin neurones in the medial preoptic area. J Neuroendocrinol. 2015;27(1):57–65. https://doi.org/10.1111/jne.12235.

    Article  CAS  PubMed  Google Scholar 

  69. Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev. 2007;53(2):367–78. https://doi.org/10.1262/jrd.18146.

    Article  CAS  PubMed  Google Scholar 

  70. Inoue N, Sasagawa K, Ikai K, Sasaki Y, Tomikawa J, Oishi S, et al. Kisspeptin neurons mediate reflex ovulation in the musk shrew (Suncus murinus). Proc Natl Acad Sci U S A. 2011;108(42):17527. https://doi.org/10.1073/pnas.1113035108.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinol. 2007;148(4):1774–83. https://doi.org/10.1210/en.2006-1540.

    Article  CAS  Google Scholar 

  72. Watanabe Y, Uenoyama Y, Suzuki J, Takase K, Suetomi Y, Ohkura S, et al. Oestrogen-induced activation of preoptic kisspeptin neurones may be involved in the luteinising hormone surge in male and female Japanese monkeys. J Neuroendocrinol. 2014;26(12):909–17. https://doi.org/10.1111/jne.12227.

    Article  CAS  PubMed  Google Scholar 

  73. Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinol. 2006;147(12):5817–25. https://doi.org/10.1210/en.2006-0787.

    Article  CAS  Google Scholar 

  74. Piet R, Kalil B, McLennan T, Porteous R, Czieselsky K, Herbison AE. Dominant neuropeptide cotransmission in kisspeptin-GABA regulation of GnRH neuron firing driving ovulation. J Neurosci. 2018;38(28):6310. https://doi.org/10.1523/JNEUROSCI.0658-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J, Atkin S, Bookout AL, et al. Characterization of kiss1 neurons using transgenic mouse models. Neurosci. 2011;173:37–56. https://doi.org/10.1016/j.neuroscience.2010.11.022.

    Article  CAS  Google Scholar 

  76. Kuehl-Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE, Partin KM. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci. 2002;22(6):2313. https://doi.org/10.1523/JNEUROSCI.22-06-02313.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Clarkson J, Herbison AE. Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J Neuroendocrinol. 2011;23(4):293–301. https://doi.org/10.1111/j.1365-2826.2011.02107.x.

    Article  CAS  PubMed  Google Scholar 

  78. Stephens SBZ, Rouse ML, Tolson KP, Liaw RB, Parra RA, Chahal N, et al. Effects of selective deletion of tyrosine hydroxylase from kisspeptin cells on puberty and reproduction in male and female mice. eNeuro. 2017;4(3):0150–17. https://doi.org/10.1523/ENEURO.0150-17.2017.

    Article  Google Scholar 

  79. Wiegand SJ, Terasawa E, Bridson WE, Goy RW. Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Neuroendocrinol. 1980;31(2):147–57. https://doi.org/10.1159/000123066.

    Article  CAS  Google Scholar 

  80. Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, et al. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res. 2019;45(12):2318–29. https://doi.org/10.1111/jog.14124.

    Article  CAS  PubMed  Google Scholar 

  81. Hassaneen A, Naniwa Y, Suetomi Y, Matsuyama S, Kimura K, Ieda N, et al. Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers. J Reprod Dev. 2016;62(5):471–7. https://doi.org/10.1262/jrd.2016-075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karsch FJ, Foster DL. Sexual differentiation of the mechanism controlling the reovulatory discharge of luteinizing hormone in sheep1,2. Endocrinol. 1975;97(2):373–9. https://doi.org/10.1210/endo-97-2-373.

    Article  CAS  Google Scholar 

  83. Crowley WR. Sex differences in the responses of hypothalamic luteinizing hormone-releasing hormone and catecholamine systems to ovarian hormones and naloxone: implications for sexual differentiation of luteinizing hormone secretion in rats. Brain Res. 1988;461(2):314–21. https://doi.org/10.1016/0006-8993(88)90261-2.

    Article  CAS  PubMed  Google Scholar 

  84. Henderson SR, Baker C, Fink G. Effect of oestradiol-17β exposure on the spontaneoUS secretion of gonadotrophins in chronically gonadectomized rats. J Endocrinol. 1977;73(3):455–62. https://doi.org/10.1677/joe.0.0730455.

    Article  CAS  PubMed  Google Scholar 

  85. Stearns EL, Winter JSD, Faiman C. Positive feedback effect of progestin upon serum gonadotropins in estrogen-primed castrate men1. J Clin Endocrinol Metab. 1973;37(4):635–8. https://doi.org/10.1210/jcem-37-4-635.

    Article  CAS  PubMed  Google Scholar 

  86. Kriegsfeld LJ, Silver R, Gore AC, Crews D. Vasoactive intestinal polypeptide contacts on gonadotropin-releasing hormone neurones increase following puberty in female rats. J Neuroendocrinol. 2002;14(9):685–90. https://doi.org/10.1046/j.1365-2826.2002.00818.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gotlieb N, Moeller J, Kriegsfeld L. Development and modulation of female reproductive function by circadian signals. 2020. https://doi.org/10.1007/978-3-030-40002-6_16.

    Article  Google Scholar 

  88. Zhao S, Kriegsfeld LJ. Daily Changes in GT1–7 Cell sensitivity to GnRH secretagogues that trigger ovulation. Neuroendocrinol. 2009;89(4):448–57. https://doi.org/10.1159/000192370.

    Article  CAS  Google Scholar 

  89. Piet R, Dunckley H, Lee K, Herbison AE. Vasoactive intestinal peptide excites GnRH neurons in male and female mice. Endocrinol. 2016;157(9):3621–30. https://doi.org/10.1210/en.2016-1399.

    Article  CAS  Google Scholar 

  90. Williams WP III, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinol. 2011;152(2):595–606. https://doi.org/10.1210/en.2010-0943.

    Article  CAS  Google Scholar 

  91. Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS. Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and clock mutant mice1. Bio Reprod. 2006;75(5):778–84. https://doi.org/10.1095/biolreprod.106.052845.

    Article  CAS  Google Scholar 

  92. Kriegsfeld L, Williams IIIW. Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol (Lausanne). 2012. https://doi.org/10.3389/fendo.2012.00060.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Piet R, Fraissenon A, Boehm U, Herbison AE. Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J Neurosci. 2015;35(17):6881. https://doi.org/10.1523/JNEUROSCI.4587-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ancel C, Inglis MA, Anderson GM. Central RFRP-3 Stimulates LH Secretion in male mice and has cycle stage–dependent inhibitory effects in females. Endocrinol. 2017;158(9):2873–83. https://doi.org/10.1210/en.2016-1902.

    Article  CAS  Google Scholar 

  95. Clarke IJ, Sari IP, Qi Y, Smith JT, Parkington HC, Ubuka T, et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinol. 2008;149(11):5811–21. https://doi.org/10.1210/en.2008-0575.

    Article  CAS  Google Scholar 

  96. Kriegsfeld LJ, Jennings KJ, Bentley GE, Tsutsui K. Gonadotrophin-inhibitory hormone and its mammalian orthologue RFamide-related peptide-3: discovery and functional implications for reproduction and stress. J Neuroendocrinol. 2018;30(7):e12597-e. https://doi.org/10.1111/jne.12597.

    Article  CAS  Google Scholar 

  97. Ubuka T, Inoue K, Fukuda Y, Mizuno T, Ukena K, Kriegsfeld LJ, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinol. 2012;153(1):373–85. https://doi.org/10.1210/en.2011-1110.

    Article  CAS  Google Scholar 

  98. Ancel C, Bentsen AH, Sébert M-E, Tena-Sempere M, Mikkelsen JD, Simonneaux V. Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule. Endocrinol. 2012;153(3):1352–63. https://doi.org/10.1210/en.2011-1622.

    Article  CAS  Google Scholar 

  99. Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1):172–91. https://doi.org/10.1016/S0006-8993(01)02890-6.

    Article  CAS  PubMed  Google Scholar 

  100. Khan AR, Kauffman AS. The role of kisspeptin and RFamide-related peptide-3 neurones in the circadian-timed preovulatory luteinising hormone surge. J Neuroendocrinol. 2012;24(1):131–43. https://doi.org/10.1111/j.1365-2826.2011.02162.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibson EM, Humber SA, Jain S, Williams WP III, Zhao S, Bentley GE, et al. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinol. 2008;149(10):4958–69. https://doi.org/10.1210/en.2008-0316.

    Article  CAS  Google Scholar 

  102. Russo KA, La JL, Stephens SBZ, Poling MC, Padgaonkar NA, Jennings KJ, et al. Circadian control of the female reproductive axis through gated responsiveness of the RFRP-3 system to VIP signaling. Endocrinol. 2015;156(7):2608–18. https://doi.org/10.1210/en.2014-1762.

    Article  CAS  Google Scholar 

  103. Navarro VM, Castellano JM, Fernández-Fernández R, Tovar S, Roa J, Mayen A, et al. Characterization of the Potent Luteinizing Hormone-Releasing Activity of KiSS-1 Peptide, the Natural Ligand of GPR54. Endocrinol. 2005;146(1):156–63. https://doi.org/10.1210/en.2004-0836.

    Article  CAS  Google Scholar 

  104. Merkley CM, Porter KL, Coolen LM, Hileman SM, Billings HJ, Drews S, et al. KNDy (kisspeptin/neurokinin B/dynorphin) neurons are activated during both pulsatile and surge secretion of LH in the ewe. Endocrinol. 2012;153(11):5406–14. https://doi.org/10.1210/en.2012-1357.

    Article  CAS  Google Scholar 

  105. de Roux N, Genin E, Carel J-C, Matsuda F, Chaussain J-L, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Nat Acad Sci U S A. 2003;100(19):10972–6. https://doi.org/10.1073/pnas.1834399100.

    Article  CAS  Google Scholar 

  106. Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol. 2011;8:40. https://doi.org/10.1038/nrendo.2011.147.

    Article  CAS  PubMed  Google Scholar 

  107. Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinol. 2008;149(4):1979–86. https://doi.org/10.1210/en.2007-1365.

    Article  CAS  Google Scholar 

  108. Parkash J, D’Anglemont De Tassigny X, Bellefontaine N, Campagne C, Mazure D, Buée-Scherrer V, et al. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle. Endocrinol. 2010;151(6):2723–35. https://doi.org/10.1210/en.2010-0007.

    Article  CAS  Google Scholar 

  109. Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci. 2007;27(13):3445. https://doi.org/10.1523/JNEUROSCI.4799-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sato S, Braham CS, Putnam SK, Hull EM. Neuronal nitric oxide synthase and gonadal steroid interaction in the MPOA of male rats: co-localization and testosterone-induced restoration of copulation and nNOS-immunoreactivity. Brain Res. 2005;1043(1):205–13. https://doi.org/10.1016/j.brainres.2005.02.074.

    Article  CAS  PubMed  Google Scholar 

  111. Scordalakes EM, Shetty SJ, Rissman EF. Roles of estrogen receptor α and androgen receptor in the regulation of neuronal nitric oxide synthase. J Comp Neurol. 2002;453(4):336–44. https://doi.org/10.1002/cne.10413.

    Article  CAS  PubMed  Google Scholar 

  112. de Anglemont Tassigny X, Campagne C, Dehouck B, Leroy D, Holstein GR, Beauvillain J-C, et al. Coupling of neuronal nitric oxide synthase to NMDA receptors via postsynaptic density-95 depends on estrogen and contributes to the central control of adult female reproduction. J Neurosci. 2007;27(23):6103. https://doi.org/10.1523/JNEUROSCI.5595-06.2007.

    Article  CAS  Google Scholar 

  113. de d’Anglemont Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiol. 2010;25(4):207–17. https://doi.org/10.1152/physiol.00009.2010.

    Article  CAS  Google Scholar 

  114. De Seranno S, Estrella C, Loyens A, Cornea A, Ojeda SR, Beauvillain J-C, et al. Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J Neurosci. 2004;24(46):10353. https://doi.org/10.1523/JNEUROSCI.3228-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev. 2010;31(4):544–77. https://doi.org/10.1210/er.2009-0023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinol. 2008;149(9):4605–14. https://doi.org/10.1210/en.2008-0321.

    Article  CAS  Google Scholar 

  117. Abel TW, Voytko ML, Rance NE. The effects of hormone replacement therapy on hypothalamic neuropeptide gene expression in a primate model of menopause1. J Clin Endocrinol Metab. 1999;84(6):2111–8. https://doi.org/10.1210/jcem.84.6.5689.

    Article  CAS  PubMed  Google Scholar 

  118. Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM. Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinol. 2010;151(9):4494–503. https://doi.org/10.1210/en.2010-0223.

    Article  CAS  Google Scholar 

  119. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinol. 2008;149(9):4387–95. https://doi.org/10.1210/en.2008-0438.

    Article  CAS  Google Scholar 

  120. Goodman RL, Coolen LM, Anderson GM, Hardy SL, Valent M, Connors JM, et al. Evidence that dynorphin plays a major role in mediating progesterone negative feedback on gonadotropin-releasing hormone neurons in sheep. Endocrinol. 2004;145(6):2959–67. https://doi.org/10.1210/en.2003-1305.

    Article  CAS  Google Scholar 

  121. Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol. 2006;498(5):712–26. https://doi.org/10.1002/cne.21086.

    Article  CAS  PubMed  Google Scholar 

  122. Foradori CD, Amstalden M, Goodman RL, Lehman MN. Colocalisation of dynorphin A and neurokinin B immunoreactivity in the arcuate nucleus and median eminence of the sheep. J Neuroendocrinol. 2006;18(7):534–41. https://doi.org/10.1111/j.1365-2826.2006.01445.x.

    Article  CAS  PubMed  Google Scholar 

  123. Desroziers E, Mikkelsen J, Simonneaux V, Keller M, Tillet Y, Caraty A, et al. Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol. 2010;22(10):1101–12. https://doi.org/10.1111/j.1365-2826.2010.02053.x.

    Article  CAS  PubMed  Google Scholar 

  124. Burke Michelle C, Letts Penny A, Krajewski Sally J, Rance Naomi E. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol. 2006;498(5):712–26. https://doi.org/10.1002/cne.21086.

    Article  CAS  PubMed  Google Scholar 

  125. Foradori CD, Coolen LM, Fitzgerald ME, Skinner DC, Goodman RL, Lehman MN. Colocalization of progesterone receptors in parvicellular dynorphin neurons of the ovine preoptic area and hypothalamus. Endocrinol. 2002;143(11):4366–74. https://doi.org/10.1210/en.2002-220586.

    Article  CAS  Google Scholar 

  126. Krajewski SJ, Burke MC, Anderson MJ, McMullen NT, Rance NE. Forebrain projections of arcuate neurokinin B neurons demonstrated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neurosci. 2010;166(2):680–97. https://doi.org/10.1016/j.neuroscience.2009.12.053.

    Article  CAS  Google Scholar 

  127. Goubillon M-L, Forsdike RA, Robinson JE, Ciofi P, Caraty A, Herbison AE. Identification of neurokinin B-expressing neurons as an highly estrogen-receptive, sexually dimorphic cell group in the ovine arcuate nucleus**This work was supported by the United Kingdom Biotechnology and Biological Sciences Research Council (to J.E.R. and A.E.H.) and a European Community Marie Curie Research Training Grant (to M.L.G.). Endocrinol. 2000;141(11):4218–25. https://doi.org/10.1210/endo.141.11.7743

  128. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett. 2006;401(3):225–30. https://doi.org/10.1016/j.neulet.2006.03.039.

    Article  CAS  PubMed  Google Scholar 

  129. Maeda K-I, Ohkura S, Uenoyama Y, Wakabayashi Y, Oka Y, Tsukamura H, et al. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res. 2010;1364:103–15. https://doi.org/10.1016/j.brainres.2010.10.026.

    Article  CAS  PubMed  Google Scholar 

  130. Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA. Neurokinin B and the hypothalamic regulation of reproduction. Brain Res. 2010;1364:116–28. https://doi.org/10.1016/j.brainres.2010.08.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Higo S, Iijima N, Ozawa H. Characterisation of kiss1r (Gpr54)-expressing neurones in the arcuate nucleus of the female rat hypothalamus. J Neuroendocrinol. 2017;29:2. https://doi.org/10.1111/jne.12452.

    Article  CAS  Google Scholar 

  132. Li Q, Millar RP, Clarke IJ, Smith JT. Evidence that neurokinin B controls basal gonadotropin-releasing hormone secretion but is not critical for estrogen-positive feedback in sheep. Neuroendocrinol. 2015;101(2):161–74. https://doi.org/10.1159/000377702.

    Article  CAS  Google Scholar 

  133. Clarkson J, Han SY, Piet R, McLennan T, Kane GM, Ng J, et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A. 2017;114(47):E10216. https://doi.org/10.1073/pnas.1713897114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sasaki T, Sonoda T, Tatebayashi R, Kitagawa Y, Oishi S, Yamamoto K, et al. Peripheral administration of SB223412, a selective neurokinin-3 receptor antagonist, suppresses pulsatile luteinizing hormone secretion by acting on the gonadotropin-releasing hormone pulse generator in estrogen-treated ovariectomized female goats. J Reprod Dev. 2020;66(4):351–7. https://doi.org/10.1262/jrd.2019-145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Voliotis M, Li XF, De Burgh R, Lass G, Lightman SL, Byrne KT, et al. The origin of GnRH pulse generation: an integrative mathematical-experimental approach. J Neurosci. 2019;39(49):9738. https://doi.org/10.1523/JNEUROSCI.0828-19.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Narayanaswamy S, Prague JK, Jayasena CN, Papadopoulou DA, Mizamtsidi M, Shah AJ, et al. Investigating the KNDy hypothesis in humans by coadministration of kisspeptin, neurokinin B, and naltrexone in men. J Clin Endocrinol Metab. 2016;101(9):3429–36. https://doi.org/10.1210/jc.2016-1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Terasawa E. Mechanism of pulsatile GnRH release in primates: unresolved questions. Mol Cell Endocrinol. 2019;498:110578. https://doi.org/10.1016/j.mce.2019.110578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hrabovszky E, Sipos MT, Molnár CS, Ciofi P, Borsay BÁ, Gergely P, et al. Low degree of overlap between kisspeptin, neurokinin B, and dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinol. 2012;153(10):4978–89. https://doi.org/10.1210/en.2012-1545.

    Article  CAS  Google Scholar 

  139. Hrabovszky E, Borsay BÁ, Rácz K, Herczeg L, Ciofi P, Bloom SR, et al. Substance P immunoreactivity exhibits frequent colocalization with kisspeptin and neurokinin B in the human infundibular region. PloS one. 2013;8(8):e72369-e. https://doi.org/10.1371/journal.pone.0072369.

    Article  Google Scholar 

  140. Emekci Ozay O, Ozay AC, Acar B, Cagliyan E, Seçil M, Küme T. Role of kisspeptin in polycystic ovary syndrome (PCOS). Gynecol Endocrinol. 2016;32(9):718–22. https://doi.org/10.3109/09513590.2016.1161019.

    Article  CAS  PubMed  Google Scholar 

  141. Lippincott MF, León S, Chan Y-M, Fergani C, Talbi R, Farooqi IS, et al. Hypothalamic reproductive endocrine pulse generator activity independent of neurokinin B and dynorphin signaling. J Clin Endocrinol Metab. 2019;104(10):4304–18. https://doi.org/10.1210/jc.2019-00146.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lehman MN, He W, Coolen LM, Levine JE, Goodman RL. Does the KNDy model for the control of gonadotropin-releasing hormone pulses apply to monkeys and humans? Semin Reprod Med. 2019;37(02):071–83. https://doi.org/10.1055/s-0039-3400254.

    Article  CAS  Google Scholar 

  143. Moore AM, Coolen LM, Lehman MN. Kisspeptin/neurokinin B/dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Sci Rep. 2019;9(1):14768. https://doi.org/10.1038/s41598-019-51201-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, McMullen NT, Rance NE. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature. Proc Natl Acad Sci U S A. 2012;109(48):19846–51. https://doi.org/10.1073/pnas.1211517109.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, et al. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinol. 2012;153(6):2800–12. https://doi.org/10.1210/en.2012-1045.

    Article  CAS  Google Scholar 

  146. Kinsey-Jones JS, Grachev P, Li XF, Lin YS, Milligan SR, Lightman SL, et al. The inhibitory effects of neurokinin B on GnRH pulse generator frequency in the female rat. Endocrinol. 2012;153(1):307–15. https://doi.org/10.1210/en.2011-1641.

    Article  CAS  Google Scholar 

  147. Grachev P, Li XF, Kinsey-Jones JS, di Domenico AL, Millar RP, Lightman SL, et al. Suppression of the GnRH pulse generator by neurokinin B involves a κ-opioid receptor-dependent mechanism. Endocrinol. 2012;153(10):4894–904. https://doi.org/10.1210/en.2012-1574.

    Article  CAS  Google Scholar 

  148. Grachev P, Li XF, Lin YS, Hu MH, Elsamani L, Paterson SJ, et al. GPR54-dependent stimulation of luteinizing hormone secretion by neurokinin B in prepubertal rats. PloS one. 2012;7(9):e44344. https://doi.org/10.1371/journal.pone.0044344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Navarro VM, Castellano JM, McConkey SM, Pineda R, Ruiz-Pino F, Pinilla L, et al. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab. 2010;300(1):E202–10. https://doi.org/10.1152/ajpendo.00517.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. García-Galiano D, van Ingen Schenau D, Leon S, Krajnc-Franken MAM, Manfredi-Lozano M, Romero-Ruiz A, et al. Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice. Endocrinol. 2012;153(1):316–28. https://doi.org/10.1210/en.2011-1260.

    Article  CAS  Google Scholar 

  151. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, et al. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci. 2009;29(12):3920. https://doi.org/10.1523/JNEUROSCI.5740-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li XF, Kinsey-Jones JS, Cheng Y, Knox AM, Lin Y, Petrou NA, et al. Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PloS one. 2009;4(12):e8334. https://doi.org/10.1371/journal.pone.0008334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Millar RP, Roseweir AK, Tello JA, Anderson RA, George JT, Morgan K, et al. Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology. Brain Res. 2010;1364:81–9. https://doi.org/10.1016/j.brainres.2010.09.044.

    Article  CAS  PubMed  Google Scholar 

  154. Beale KE, Kinsey-Jones JS, Gardiner JV, Harrison EK, Thompson EL, Hu MH, et al. The physiological role of arcuate kisspeptin neurons in the control of reproductive function in female rats. Endocrinol. 2014;155(3):1091–8. https://doi.org/10.1210/en.2013-1544.

    Article  CAS  Google Scholar 

  155. Hu MH, Li XF, McCausland B, Li SY, Gresham R, Kinsey-Jones JS, et al. Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats. Endocrinol. 2015;156(7):2619–31. https://doi.org/10.1210/en.2014-1655.

    Article  CAS  Google Scholar 

  156. de Croft S, Boehm U, Herbison AE. Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinol. 2013;154(8):2750–60. https://doi.org/10.1210/en.2013-1231.

    Article  CAS  Google Scholar 

  157. Nandankar N, Negrón AL, Wolfe A, Levine JE, Radovick S. Deficiency of arcuate nucleus kisspeptin results in postpubertal central hypogonadism. Am J Physiol Endocrinol Metab. 2021;321(2):E264–80. https://doi.org/10.1152/ajpendo.00088.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martín JD, et al. Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem. 2004;11(15):2045–81. https://doi.org/10.2174/0929867043364748.

    Article  CAS  PubMed  Google Scholar 

  159. Bonner TI, Affolter HU, Young AC, Young WS 3rd. A cDNA encoding the precursor of the rat neuropeptide, neurokinin B. Brain Res. 1987;388(3):243–9.

    CAS  PubMed  Google Scholar 

  160. Chawla Monica K, Gutierrez Graciela M, Young WS, McMullen Nathaniel T, Rance Naomi E. Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol. 1998;384(3):429–42. https://doi.org/10.1002/(SICI)1096-9861(19970804)384:3.

    Article  Google Scholar 

  161. Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML. mRNA expression of tachykinins and tachykinin receptors in different human tissues. Eur Jour Pharmacol. 2004;494(2–3):233–9. https://doi.org/10.1016/j.ejphar.2004.05.016.

    Article  CAS  Google Scholar 

  162. Marksteiner J, Sperk G, Krause JE. Distribution of neurons expressing neurokinin B in the rat brain: immunohistochemistry and in situ hybridization. J Comp Neurol. 1992;317(4):341–56. https://doi.org/10.1002/cne.903170403.

    Article  CAS  PubMed  Google Scholar 

  163. Ruka KA, Burger LL, Moenter SM. Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and κ-opioid receptors in adult male mice. Endocrinol. 2013;154(8):2761–71. https://doi.org/10.1210/en.2013-1268.

    Article  CAS  Google Scholar 

  164. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010;31(11):1984–98. https://doi.org/10.1111/j.1460-9568.2010.07239.x.

    Article  CAS  PubMed  Google Scholar 

  165. Krajewski SJ, Anderson MJ, Iles-Shih L, Chen KJ, Urbanski HF, Rance NE. Morphologic evidence that neurokinin B modulates gonadotropin-releasing hormone secretion via neurokinin 3 receptors in the rat median eminence. J Comp Neurol. 2005;489(3):372–86. https://doi.org/10.1002/cne.20626.

    Article  CAS  PubMed  Google Scholar 

  166. Lucas LR, Hurley DL, Krause JE, Harlan RE. Localization of the tachykinin neurokinin B precursor peptide in rat brain by immunocytochemistry and in situ hybridization. Neurosci. 1992;51(2):317–45. https://doi.org/10.1016/0306-4522(92)90318-V.

    Article  CAS  Google Scholar 

  167. Krajewski SJ, Anderson MJ, Iles-Shih L, Chen KJ, Urbanski HF, Rance NE. Morphologic evidence that neurokinin B modulates gonadotropin-releasing hormone secretion via neurokinin 3 receptors in the rat median eminence. J Comp Neurol. 2005;489(3):372–86. https://doi.org/10.1002/cne.20626.

    Article  CAS  PubMed  Google Scholar 

  168. Amstalden M, Coolen LM, Hemmerle AM, Billings HJ, Connors JM, Goodman RL, et al. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin b cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J Neuroendocrinol. 2010;22(1):1–12. https://doi.org/10.1111/j.1365-2826.2009.01930.x.

    Article  CAS  PubMed  Google Scholar 

  169. Gaskins GT, Glanowska KM, Moenter SM. Activation of neurokinin 3 receptors stimulates GnRH release in a location-dependent but kisspeptin-independent manner in adult mice. Endocrinol. 2013;154(11):3984–9. https://doi.org/10.1210/en.2013-1479.

    Article  CAS  Google Scholar 

  170. Rance NE, Young WS III. Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women*. Endocrinol. 1991;128(5):2239–47. https://doi.org/10.1210/endo-128-5-2239.

    Article  CAS  Google Scholar 

  171. Sandoval-Guzmán T, Rance NE. Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of Fos expression in the rat hypothalamus. Brain Res. 2004;1026(2):307–12. https://doi.org/10.1016/j.brainres.2004.08.026.

    Article  CAS  PubMed  Google Scholar 

  172. Guran T, Tolhurst G, Bereket A, Rocha N, Porter K, Turan S, et al. Hypogonadotropic hypogonadism due to a novel missense mutation in the first extracellular loop of the neurokinin B receptor. J Clin Endocrinol Metab. 2009;94(10):3633–9. https://doi.org/10.1210/jc.2009-0551.

    Article  CAS  PubMed  Google Scholar 

  173. Billings HJ, Connors JM, Altman SN, Hileman SM, Holaskova I, Lehman MN, et al. Neurokinin B acts via the neurokinin-3 receptor in the retrochiasmatic area to stimulate luteinizing hormone secretion in sheep. Endocrinology. 2010;151(8):3836–46. https://doi.org/10.1210/en.2010-0174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ramaswamy S, Seminara SB, Plant TM. Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinol. 2011;94(3):237–45. https://doi.org/10.1159/000329045.

    Article  CAS  Google Scholar 

  175. Chrysanthi F, Víctor MN. Expanding the role of tachykinins in the neuroendocrine control of reproduction. Reprod. 2017;153(1):R1–14. https://doi.org/10.1530/REP-16-0378.

    Article  Google Scholar 

  176. Noritake K-I, Matsuoka T, Ohsawa T, Shimomura K, Sanbuissho A, Uenoyama Y, et al. Involvement of neurokinin receptors in the control of pulsatile luteinizing hormone secretion in rats. J Reprod Dev. 2011;57(3):409–15. https://doi.org/10.1262/jrd.11-002S.

    Article  CAS  PubMed  Google Scholar 

  177. Li SY, Li XF, Hu MH, Shao B, Poston L, Lightman SL, et al. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat. J Neuroendocrinol. 2014;26(8):521–7. https://doi.org/10.1111/jne.12167.

    Article  CAS  PubMed  Google Scholar 

  178. Navarro VM, Bosch MA, León S, Simavli S, True C, Pinilla L, et al. The integrated hypothalamic tachykinin-kisspeptin system as a central coordinator for reproduction. Endocrinol. 2015;156(2):627–37. https://doi.org/10.1210/en.2014-1651.

    Article  CAS  Google Scholar 

  179. Ruiz-Pino F, Garcia-Galiano D, Manfredi-Lozano M, Leon S, Sánchez-Garrido MA, Roa J, et al. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats. Endocrinol. 2015;156(2):576–88. https://doi.org/10.1210/en.2014-1026.

    Article  CAS  Google Scholar 

  180. Okamura H, Yamamura T, Wakabayashi Y. Mapping of KNDy neurons and immunohistochemical analysis of the interaction between KNDy and substance P neural systems in goat. J Reprod Dev. 2017;63(6):571–80. https://doi.org/10.1262/jrd.2017-103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fergani C, Navarro VM. Expanding the role of tachykinins in the neuroendocrine control of reproduction. Reprod. 2016;153(1):R1-r14. https://doi.org/10.1530/rep-16-0378.

    Article  CAS  Google Scholar 

  182. Chavkin C, James IF, Goldstein A, Chavkin C. Dynorphin is a specific endogenous ligand of the -opioid receptor. Science. 1982;215(4531):413–5. https://doi.org/10.1126/science.6120570

    Article  CAS  PubMed  Google Scholar 

  183. Weems PW, Witty CF, Amstalden M, Coolen LM, Goodman RL, Lehman MN. κ-Opioid receptor is colocalized in GnRH and KNDy cells in the female ovine and rat brain. Endocrinol. 2016;157(6):2367–79. https://doi.org/10.1210/en.2015-1763.

    Article  CAS  Google Scholar 

  184. Zhen S, Gallo RV. The effect of blockade of kappa-opioid receptors in the medial basal hypothalamus and medial preoptic area on luteinizing hormone release during midpregnancy in the rat. Endocrinol. 1992;131(4):1650–6. https://doi.org/10.1210/en.131.4.1650.

    Article  CAS  Google Scholar 

  185. Weems PW, Coolen LM, Hileman SM, Hardy S, McCosh RB, Goodman RL, et al. Evidence that dynorphin acts upon KNDy and GnRH neurons during GnRH pulse termination in the ewe. Endocrinol. 2018;159(9):3187–99. https://doi.org/10.1210/en.2018-00435.

    Article  CAS  Google Scholar 

  186. Li JG, Luo LY, Krupnick JG, Benovic JL, Liu-Chen LY. U50,488H-induced internalization of the human kappa opioid receptor involves a beta-arrestin- and dynamin-dependent mechanism .Kappa receptor internalization is not required for mitogen-activated protein kinase activation. J Biol Chem. 1999;274(17):12087–94. https://doi.org/10.1074/jbc.274.17.12087.

    Article  CAS  PubMed  Google Scholar 

  187. Boukhliq R, Goodman RL, Berriman SJ, Adrian B, Lehman MN. A subset of gonadotropin-releasing hormone neurons in the ovine medial basal hypothalamus is activated during increased pulsatile luteinizing hormone secretion1. Endocrinol. 1999;140(12):5929–36. https://doi.org/10.1210/endo.140.12.7216.

    Article  CAS  Google Scholar 

  188. Shuster SJ, Riedl M, Li X, Vulchanova L, Elde R. Stimulus-dependent translocation of kappa opioid receptors to the plasma membrane. J Neurosci. 1999;19(7):2658–64. https://doi.org/10.1523/jneurosci.19-07-02658.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Brown CH, Leng G, Ludwig M, Bourque CW. Endogenous activation of supraoptic nucleus kappa-opioid receptors terminates spontaneous phasic bursts in rat magnocellular neurosecretory cells. J Neurophysiol. 2006;95(5):3235–44. https://doi.org/10.1152/jn.00062.2006.

    Article  CAS  PubMed  Google Scholar 

  190. Foradori CD, Goodman RL, Lehman MN. Distribution of preprodynorphin mRNA and dynorphin-a immunoreactivity in the sheep preoptic area and hypothalamus. Neurosci. 2005;130(2):409–18. https://doi.org/10.1016/j.neuroscience.2004.08.051.

    Article  CAS  Google Scholar 

  191. Tsuchida H, Mostari P, Yamada K, Miyazaki S, Enomoto Y, Inoue N, et al. Paraventricular dynorphin A neurons mediate LH pulse suppression induced by hindbrain glucoprivation in female rats. Endocrinol. 2020;161(11):bqqa161. https://doi.org/10.1210/endocr/bqaa161.

    Article  Google Scholar 

  192. Navarro VM, Gottsch ML, Wu M, García-Galiano D, Hobbs SJ, Bosch MA, et al. Regulation of NKB pathways and their roles in the control of kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinol. 2011;152(11):4265–75. https://doi.org/10.1210/en.2011-1143.

    Article  CAS  Google Scholar 

  193. Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal androgen exposure alters KNDy neurons and their afferent network in a model of polycystic ovarian syndrome. Endocrinol. 2021;162:11. https://doi.org/10.1210/endocr/bqab158.

    Article  CAS  Google Scholar 

  194. Osuka S, Iwase A, Nakahara T, Kondo M, Saito A, Bayasula, et al. Kisspeptin in the hypothalamus of 2 rat models of polycystic ovary syndrome. Endocrinol. 2017;158(2):367–77. https://doi.org/10.1210/en.2016-1333.

    Article  CAS  Google Scholar 

  195. Yan X, Yuan C, Zhao N, Cui Y, Liu J. Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats. J Endocrinol. 2014;222(1):73–85. https://doi.org/10.1530/JOE-14-0021.

    Article  CAS  PubMed  Google Scholar 

  196. Matsuzaki T, Tungalagsuvd A, Iwasa T, Munkhzaya M, Yanagihara R, Tokui T, et al. Kisspeptin mRNA expression is increased in the posterior hypothalamus in the rat model of polycystic ovary syndrome. Endocr J. 2017;64(1):7–14. https://doi.org/10.1507/endocrj.EJ16-0282.

    Article  CAS  PubMed  Google Scholar 

  197. George JT, Kakkar R, Marshall J, Scott ML, Finkelman RD, Ho TW, et al. Neurokinin B receptor antagonism in women with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(11):4313–21. https://doi.org/10.1210/jc.2016-1202.

    Article  CAS  PubMed  Google Scholar 

  198. Panidis D, Rousso D, Koliakos G, Kourtis A, Katsikis I, Farmakiotis D, et al. Plasma metastin levels are negatively correlated with insulin resistance and free androgens in women with polycystic ovary syndrome. Fertil Steril. 2006;85(6):1778–83. https://doi.org/10.1016/j.fertnstert.2005.11.044.

    Article  CAS  PubMed  Google Scholar 

  199. Chen X, Mo Y, Li L, Chen Y, Li Y, Yang D. Increased plasma metastin levels in adolescent women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2010;149(1):72–6. https://doi.org/10.1016/j.ejogrb.2009.11.018.

    Article  CAS  PubMed  Google Scholar 

  200. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356–62. https://doi.org/10.1038/nature03711.

    Article  CAS  PubMed  Google Scholar 

  201. Steinhoff JS, Lass A, Schupp M. Biological functions of RBP4 and Its relevance for human diseases. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.659977.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jeon YE, Lee KE, Jung JA, Yim SY, Kim H, Seo SK, et al. Kisspeptin, leptin, and retinol-binding protein 4 in women with polycystic ovary syndrome. Gynecol Obstet Invest. 2013;75(4):268–74. https://doi.org/10.1159/000350217.

    Article  CAS  PubMed  Google Scholar 

  203. Yarmolinskaya MI, Ganbarli NF, Tkachenko NN, Nikolaeva VI, Tolibova GK, Tral TG, et al. Kisspeptin and polycystic ovary syndrome - is there any connection? JOWD. 2017;66(6):73–80. https://doi.org/10.17816/JOWD66673-80

  204. Albalawi FS, Daghestani MH, Daghestani MH, Eldali A, Warsy AS. rs4889 polymorphism in KISS1 gene, its effect on polycystic ovary syndrome development and anthropometric and hormonal parameters in Saudi women. J Biomed Sci. 2018;25(1):50. https://doi.org/10.1186/s12929-018-0452-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Daghestani MH. Evaluation of biochemical, endocrine, and metabolic biomarkers for the early diagnosis of polycystic ovary syndrome among non-obese Saudi women. Int J Gynaecol Obstet. 2018;142(2):162–9. https://doi.org/10.1002/ijgo.12527.

    Article  CAS  PubMed  Google Scholar 

  206. Gorkem U, Togrul C, Arslan E, Sargin Oruc A, Buyukkayaci Duman N. Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome? Gynecol Endocrinol. 2018;34(2):157–60. https://doi.org/10.1080/09513590.2017.1379499.

    Article  CAS  PubMed  Google Scholar 

  207. Kaya C, Alay İ, Babayeva G, Gedikbaşı A, Ertaş Kaya S, Ekin M, et al. Serum kisspeptin levels in unexplained infertility, polycystic ovary syndrome, and male factor infertility. Gynecol Endocrinol. 2019;35(3):228–32. https://doi.org/10.1080/09513590.2018.1519792.

    Article  CAS  PubMed  Google Scholar 

  208. Geronikolou SA, Pavlopoulou A, Cokkinos DV, Bacopoulou F, Chrousos GP. Polycystic οvary syndrome revisited: an interactions network approach. Eur J Clin Invest. 2021;51(9):e13578. https://doi.org/10.1111/eci.13578.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Jyoti Parkash is thankful to the University Grants Commission (UGC) for start-up grant F.30-318/2016 (GP-105) and DST-Science and Engineering Research Board (SERB) for Early Carrier Research Grant ECR/2015/000240 (GP-90), and Core Research Grant CRG/2020/003257 (GP-176). Mr. VP is thankful to SERB, DST, for the Junior and Senior Research Fellowship. TA and RS are also thankful to CSIR for the JRF and SRF in carrying out this research work. Dr. Jyoti Parkash is also thankful to the Central University of Punjab for RSM-CUPB/CC/16/00/13 for providing financial assistance, space, and infrastructure to carry out this research. The authors acknowledge the use of Inkscape 1.2 licensed by a GNU General Public License, version 3, and Servier Medical Art bank (https://smart.servier.com) licensed by a Creative Commons Attribution 3.0 Unported License to create schematic Figs. 1, 2, and 3.

Funding

This work is supported by the DST- Science and Engineering Research Board (SERB), Early Carrier Research grant ECR/2015/000240 (GP-90), Core Research Grant CRG/2020/003257 (GP-176), the University Grants Commission (UGC start-up grant F.30–318/2016 GP-105), and the Central University of Punjab RSM grant- CUPB/CC/16/00/13.

Author information

Authors and Affiliations

Authors

Contributions

VP drafted and wrote the article. TA and RS reviewed the article, and AS and JP reviewed and approved the article’s final version.

Corresponding author

Correspondence to Jyoti Parkash.

Ethics declarations

Ethical Consents

Ethical consents do not apply to this study since the study did not involve an animal and human subjects.

Consent to participate

Not applicable.

Consent of Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashar, V., Arora, T., Singh, R. et al. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod. Sci. 30, 802–822 (2023). https://doi.org/10.1007/s43032-022-01027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01027-5

Keywords

Navigation