Skip to main content
Log in

miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Spermatogenesis is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels by various regulators, including miRNAs. This study deals with the identification of miRNAs critical to the three important stages of germ cell development (spermatocytes, round spermatids, and mature sperm) during spermatogenesis. We used high-throughput transcriptome sequencing to identify the differentially expressed miRNAs in the pachytene spermatocytes, round spermatids, and mature sperm of rat. We identified 1843 miRNAs that were differentially expressed across the three stages of germ cell development. These miRNAs were further categorized into three classes according to their pattern of expression during spermatogenesis: class 1 — miRNAs found exclusively in one stage and absent in the other two stages; class 2 — miRNAs found in any two stages but absent in the third stage; class 3 — miRNAs expressed in all the three stages. Six hundred forty-six miRNAs were found to be specific to one developmental stage, 443 miRNAs were found to be common across any two stages, and 754 miRNAs were common to all the three stages. Target prediction for ten most abundant miRNAs specific to each category identified miRNA regulators of mitosis, meiosis, and cell differentiation. The expression of each miRNA is specific to a particular developmental stage, which is required to maintain a significant repertoire of target mRNAs in the respective stage. Thus, this study provided valuable data that can be used in the future to identify the miRNAs involved in spermatogenic arrest at a particular stage of the germ cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All representative data are provided within the manuscript and also in the supporting information. Sequencing data can be provided upon request.

Code Availability

Not applicable.

References

  1. Bhartiya D, Anand S, Patel H, Kaushik A, Pramodh S. Testicular stem cells, spermatogenesis, and infertility. In Rajender S. editor. Molecular signaling in spermatogenesis and male infertility. New York. Taylor and Francis. 2019:17–29.

  2. Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril. 2014;101(6):1552–62.

    Article  CAS  Google Scholar 

  3. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(Suppl 1):1–8.

    Article  Google Scholar 

  4. Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, De La Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J Cell Biol. 2015;208(1):53–69.

    Article  CAS  Google Scholar 

  5. Sarkar S, Yadav S, Mehta P, Gupta G, Rajender S. Histone methylation regulates gene expression in the round spermatids to set the RNA payloads of sperm. Reprod Sci. 2022;29(3):857–82.

    Article  CAS  Google Scholar 

  6. Rajender S, Meador C, Agarwal A. Small RNA in spermatogenesis and male infertility. Front Biosci (Schol Ed). 2012;4(4):1266–74.

    Google Scholar 

  7. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.

    Article  CAS  Google Scholar 

  8. Joshi M, Andrabi SW, Singh V, Bansal SK, Makker GC, Mishra G, Gupta G, Rajender S. Coding and regulatory transcriptome comparisons between fertile and infertile spermatozoa identify RNA signatures of male infertility. Andrologia. 2022;18:e14437. https://doi.org/10.1111/and.14437.

  9. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401–12.

    Article  CAS  Google Scholar 

  10. Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, Zhang Z, Yu D, Cooke HJ, Zhang Y, Shi Q. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One. 2013;8(6):e66809.

    Article  CAS  Google Scholar 

  11. Xu L, Guo Q, Chang G, Qiu L, Liu X, Bi Y, Zhang Y, Wang H, Lu W, Ren L, Chen Y, Zhang Y, Xu Q, Chen G. Discovery of microRNAs during early spermatogenesis in chicken. PLoS One. 2017;12(5):e0177098.

    Article  Google Scholar 

  12. García-López J, Alonso L, Cárdenas DB, Artaza-Alvarez H, Hourcade Jde D, Martínez S, Brieño-Enríquez MA, Del Mazo J. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA. 2015;21(5):946–62.

    Article  Google Scholar 

  13. Yao C, Yuan Q, Niu M, Fu H, Zhou F, Zhang W, Wang H, Wen L, Wu L, Li Z, He Z. Distinct expression profiles and novel targets of microRNAs in human spermatogonia, pachytene spermatocytes, and round spermatids between OA patients and NOA patients. Mol Ther Nucleic Acids. 2017;9:182–94.

    Article  CAS  Google Scholar 

  14. He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells. 2013;31(10):2205–17.

    Article  CAS  Google Scholar 

  15. Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, Brinster RL. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 2011;108(31):12740–5.

    Article  CAS  Google Scholar 

  16. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73(3):427–33.

    Article  CAS  Google Scholar 

  17. Gao H, Wen H, Cao C, Dong D, Yang C, Xie S, Zhang J, Huang X, Huang X, Yuan S, Dong W. Overexpression of microRNA-10a in germ cells causes male infertility by targeting Rad51 in mouse and human. Front Physiol. 2019;10:765.

    Article  Google Scholar 

  18. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31.

    Article  CAS  Google Scholar 

  19. Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. J Cell Biochem. 2014;115(2):232–42.

    Article  CAS  Google Scholar 

  20. Khazaie Y, Nasr Esfahani MH. MicroRNA and male infertility: a potential for diagnosis. Int J Fertil Steril. 2014;8(2):113–8.

    Google Scholar 

  21. Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology (Basel). 2017;6(3):34.

    Google Scholar 

  22. Wang M, Gao Y, Qu P, Qing S, Qiao F, Zhang Y, Mager J, Wang Y. Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci Rep. 2017;7(1):13403. https://doi.org/10.1038/s41598-017-13899-8.

    Article  CAS  Google Scholar 

  23. Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143(4):635–47.

    CAS  Google Scholar 

  24. Alves MBR, de Arruda RP, De Bem THC, Florez-Rodriguez SA, Sá Filho MF, Belleannée C, Meirelles FV, da Silveira JC, Perecin F, Celeghini ECC. Sperm-borne miR-216b modulates cell proliferation during early embryo development via K-RAS. Sci Rep. 2019;9(1):10358. https://doi.org/10.1038/s41598-019-46775-8.PMID:31316130;PMCID:PMC6637201.

    Article  Google Scholar 

  25. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, Yeung WS. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA. 2012;109(2):490–4.

    Article  CAS  Google Scholar 

  26. Pandey A, Yadav SK, Vishvkarma R, Singh B, Maikhuri JP, Rajender S, Gupta G. The dynamics of gene expression during and post meiosis sets the sperm agenda. Mol Reprod Dev. 2019;86(12):1921–39.

    Article  CAS  Google Scholar 

  27. Meistrich ML, Longtin J, Brock WA, Grimes SR Jr, Mace ML. Purification of rat spermatogenic cells and preliminary biochemical analysis of these cells. Biol Reprod. 1981;25(5):1065–77.

    Article  CAS  Google Scholar 

  28. Andrews S. FastQC: a quality control tool for high throughput sequence data.2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  29. Hannon, G.J. FASTX-Toolkit.2010.http://hannonlab.cshl.edu/fastx_toolkit.

  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article  CAS  Google Scholar 

  31. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931.PMID:31882993;PMCID:PMC7178415.

    Article  CAS  Google Scholar 

  32. Chen X, Li X, Guo J, Zhang P, Zeng W. The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol. 2017;8:35.

    Article  Google Scholar 

  33. Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, Casazza A, Mazzone M, Lyle R, Naldini L, De Palma M. miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep. 2012;1(2):141–54.

    Article  CAS  Google Scholar 

  34. Zhang R, Guo C, Liu T, Li W, Chen X. MicroRNA miR-495 regulates the development of hepatocellular carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3). Bioengineered. 2021;12(1):6902–12.

    Article  CAS  Google Scholar 

  35. Wu W, Qin Y, Li Z, Dong J, Dai J, Lu C, Guo X, Zhao Y, Zhu Y, Zhang W, Hang B, Sha J, Shen H, Xia Y, Hu Z, Wang X. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013;28(7):1827–36.

    Article  CAS  Google Scholar 

  36. Yao C, Sun M, Yuan Q, Niu M, Chen Z, Hou J, Wang H, Wen L, Liu Y, Li Z, He Z. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget. 2016;7(3):2201–19.

    Article  Google Scholar 

  37. Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, Chen Y, Cao X, Jiang C, Yan W, Xu C. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem. 2012;287(26):21686–98.

    Article  CAS  Google Scholar 

  38. Yu XF, Zou J, Bao ZJ, Dong J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 2011;17(42):4711–7.

    Article  CAS  Google Scholar 

  39. Jee YH, Wang J, Yue S, Jennings M, Clokie SJ, Nilsson O, Lui JC, Baron J. mir-374-5p, mir-379-5p, and mir-503-5p regulate proliferation and hypertrophic differentiation of growth plate chondrocytes in male rats. Endocrinology. 2018;159(3):1469–78.

    Article  CAS  Google Scholar 

  40. Xu Y, Liu Y, Xie H, Zhou Y, Yan X, Chen W, Wang X, Yu Z, Wang F, Chen X, Wang J, Han S. Profile analysis reveals endogenous RNAs regulate necrotizing enterocolitis progression. Biomed Pharmacother. 2020;125:109975.

    Article  CAS  Google Scholar 

  41. Yin CY, Kong W, Jiang J, Xu H, Zhao W. miR-7-5p inhibits cell migration and invasion in glioblastoma through targeting SATB1. Oncol Lett. 2019;17(2):1819–25.

    CAS  Google Scholar 

  42. Ma J, Fan Y, Zhang J, Feng S, Hu Z, Qiu W, Long K, Jin L, Tang Q, Wang X, Zhou Q, Gu Y, Xiao W, Liu L, Li X, Li M. Testosterone-dependent miR-26a-5p and let-7g-5p act as signaling mediators to regulate sperm apoptosis via targeting PTEN and PMAIP1. Int J Mol Sci. 2018;19(4):1233.

    Article  Google Scholar 

  43. Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, Zhang Z, Yu D, Cooke HJ, Zhang Y, Shi Q. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One. 2013;8(6):e66809.

    Article  CAS  Google Scholar 

  44. Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y, Lin F, Zhao X, Chen H. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol. 2016;13(12):1300–9.

    Article  Google Scholar 

  45. Liu W, Li L, Liu S, Wang Z, Kuang H, Xia Y, Tang C, Yin D. MicroRNA Expression Profiling Screen miR-3557/324-Targeted CaMK/mTOR in the Rat Striatum of Parkinson's Disease in Regular Aerobic Exercise. Biomed Res Int. 2019;2019:7654798. https://doi.org/10.1155/2019/7654798.

  46. Lv KT, Liu Z, Feng J, Zhao W, Hao T, Ding WY, Chu JP, Gao LJ. MiR-22-3p regulates cell proliferation and inhibits cell apoptosis through targeting the eIF4EBP3 gene in human cervical squamous carcinoma cells. Int J Med Sci. 2018;15(2):142–52.

    Article  CAS  Google Scholar 

  47. Li H, Liu D, Liu L, Huang S, Ma A, Zhang X. The role of HOTAIR/miR-152-3p/LIN28B in regulating the progression of endometrial squamous carcinoma. Arch Med Sci. 2019;17(2):434–48.

    Article  Google Scholar 

  48. Chen BF, Gu S, Suen YK, Li L, Chan WY. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics. 2014;9(1):119–28.

    Article  CAS  Google Scholar 

  49. Rodrigues AC, Spagnol AR, Frias FT, de Mendonça M, Araújo HN, Guimarães D, Silva WJ, Bolin AP, Murata GM, Silveira L. Intramuscular injection of miR-1 reduces insulin resistance in obese mice. Front Physiol. 2021;6(12):676265.

    Article  Google Scholar 

  50. Gao Z, Liu R, Liao J, Yang M, Pan E, Yin L, Pu Y. Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis. Mol Med Rep. 2016;14(4):3805–13.

    Article  CAS  Google Scholar 

  51. Zhao W, Hussain Solangi T, Wu Y, Yang X, Xu C, Wang H, Zheng X, Cai X, Zhu J. Comparative rna-seq analysis of region-specific miRNA expression in the epididymis of cattleyak. Reprod Domest Anim. 2021;56(4):555–76.

    Article  CAS  Google Scholar 

  52. Lazaridou MF, Gonschorek E, Massa C, Friedrich M, Handke D, Mueller A, Jasinski-Bergner S, Dummer R, Koelblinger P, Seliger B. Identification of miR-200a-5p targeting the peptide transporter TAP1 and its association with the clinical outcome of melanoma patients. Oncoimmunology. 2020;9(1):1774323.

    Article  Google Scholar 

  53. Wu M, Huang C, Huang X, Liang R, Feng Y, Luo X. MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma. Oncol Rep. 2017;38(4):2173–81.

    Article  CAS  Google Scholar 

  54. Zhang GF, Wu JC, Wang HY, Jiang WD, Qiu L. Overexpression of microRNA-205-5p exerts suppressive effects on stem cell drug resistance in gallbladder cancer by down-regulating PRKCE. Biosci Rep. 2020;40(9):BSR20194509.

    Article  Google Scholar 

  55. Barceló M, Mata A, Bassas L, Larriba S. Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue. Hum Reprod. 2018;33(6):1087–98.

    Article  Google Scholar 

  56. Najafipour R, Momeni A, Yousefipour F, Mousavi S, Moghbelinejad S. Underexpression of hsa-miR-449 family and their promoter hypermethylation in infertile men: a case-control study. Int J Reprod Biomed. 2021;19(1):23–34.

    CAS  Google Scholar 

  57. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31.

    Article  CAS  Google Scholar 

  58. Zhong Y, Li L, Chen Z, Diao S, He Y, Zhang Z, Zhang H, Yuan X, Li J. MIR143 inhibits steroidogenesis and induces apoptosis repressed by H3K27me3 in granulosa cells. Front Cell Dev Biol. 2020;19(8):565261.

    Article  Google Scholar 

  59. Weng Z, Peng J, Wu W, Zhang C, Zhao J, Gao H. Downregulation of PART1 inhibits proliferation and differentiation of Hep3B cells by targeting hsa-miR-3529-3p/FOXC2 axis. J Oncol. 2021;24(2021):7792223.

    Google Scholar 

  60. Gao H, Wen H, Cao C, Dong D, Yang C, Xie S, Zhang J, Huang X, Huang X, Yuan S, Dong W. Overexpression of microRNA-10a in germ cells causes male infertility by targeting Rad51 in mouse and human. Front Physiol. 2019;18(10):765.

    Article  Google Scholar 

  61. Yin H, He H, Cao X, Shen X, Han S, Cui C, Zhao J, Wei Y, Chen Y, Xia L, Wang Y, Li D, Zhu Q. MiR-148a-3p regulates skeletal muscle satellite cell differentiation and apoptosis via the PI3K/AKT signaling pathway by targeting Meox2. Front Genet. 2020;4(11):512.

    Article  Google Scholar 

  62. Singh R, Ha SE, Wei L, Jin B, Zogg H, Poudrier SM, Jorgensen BG, Park C, Ronkon CF, Bartlett A, Cho S, Morales A, Chung YH, Lee MY, Park JK, Gottfried-Blackmore A, Nguyen L, Sanders KM, Ro S. miR-10b-5p rescues diabetes and gastrointestinal dysmotility. Gastroenterology. 2021;160(5):1662-1678.e18.

    Article  CAS  Google Scholar 

  63. Khanehzad M, Nourashrafeddin SM, Abolhassani F, Kazemzadeh S, Madadi S, Shiri E, Khanlari P, Khosravizadeh Z, Hedayatpour A. MicroRNA-30a-5p promotes differentiation in neonatal mouse spermatogonial stem cells (SSCs). Reprod Biol Endocrinol. 2021;19(1):85.

    Article  CAS  Google Scholar 

  64. Liu Y, Hu X, Hu L, Xu C, Liang X. Let-7i-5p enhances cell proliferation, migration and invasion of ccRCC by targeting HABP4. BMC Urol. 2021;21(1):49.

    Article  CAS  Google Scholar 

  65. Cai L, Wang W, Li X, Dong T, Zhang Q, Zhu B, Zhao H, Wu S. MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the von Hippel-Lindau tumor suppressor. Oncol Lett. 2018;15(4):5213–9.

    Google Scholar 

  66. Ye Y, Li SL, Wang JJ. miR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells. Front Oncol. 2020;1(10):578948.

    Article  Google Scholar 

  67. Suzuki A, Saga Y. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev. 2008;22(4):430–5.

    Article  CAS  Google Scholar 

  68. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell. 1998;1(5):707–18.

    Article  CAS  Google Scholar 

  69. Xu H, Beasley M, Verschoor S, Inselman A, Handel MA, McKay MJ. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep. 2004;5(4):378–84.

    Article  CAS  Google Scholar 

  70. Hamer G, Kal HB, Westphal CH, Ashley T, de Rooij DG. Ataxia telangiectasia mutated expression and activation in the testis. Biol Reprod. 2004;70(4):1206–12.

    Article  CAS  Google Scholar 

  71. Tanaka K, Chang HL, Kagami A, Watanabe Y. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell. 2009;17(3):334–43.

    Article  Google Scholar 

  72. Arango NA, Li L, Dabir D, Nicolau F, Pieretti-Vanmarcke R, Koehler C, McCarrey JR, Lu N, Donahoe PK. Meiosis I arrest abnormalities lead to severe oligozoospermia in meiosis 1 arresting protein (M1ap)-deficient mice. Biol Reprod. 2013;88(3):76.

    Article  Google Scholar 

  73. Kumar R, Ghyselinck N, Ishiguro K, Watanabe Y, Kouznetsova A, Höög C, Strong E, Schimenti J, Daniel K, Toth A, de Massy B. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse. J Cell Sci. 2015;128(9):1800–11.

    CAS  Google Scholar 

  74. Jauert PA, Edmiston SN, Conway K, Kirkpatrick DT. RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae. Mol Cell Biol. 2002;22(3):953–64.

    Article  CAS  Google Scholar 

  75. Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease. J Biol Chem. 2014;289(9):5664–73.

    Article  CAS  Google Scholar 

  76. Abdu U, Klovstad M, Butin-Israeli V, Bakhrat A, Schüpbach T. An essential role for Drosophila hus1 in somatic and meiotic DNA damage responses. J Cell Sci. 2007;120(Pt 6):1042–9.

    Article  CAS  Google Scholar 

  77. Visnes T, Giordano F, Kuznetsova A, Suja JA, Lander AD, Calof AL, Ström L. Localisation of the SMC loading complex Nipbl/Mau2 during mammalian meiotic prophase I. Chromosoma. 2014;123(3):239–52.

    Article  CAS  Google Scholar 

  78. Grzmil P, Boinska D, Kleene KC, Adham I, Schlüter G, Kämper M, Buyandelger B, Meinhardt A, Wolf S, Engel W. PRM3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility. Biol Reprod. 2008;78(6):958–67.

    Article  CAS  Google Scholar 

  79. Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer RR, Meistrich ML. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci USA. 2000;97(9):4683–8.

    Article  CAS  Google Scholar 

  80. Abbasi F, Miyata H, Shimada K, Morohoshi A, Nozawa K, Matsumura T, Xu Z, Pratiwi P, Ikawa M. RSPH6A is required for sperm flagellum formation and male fertility in mice. J Cell Sci. 2018;131(19):jcs221648.

    Article  Google Scholar 

  81. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, Kuhl H, Baktai G, Peterffy E, Chodhari R, Chung EM, Rutman A, O’Callaghan C, Blau H, Tiszlavicz L, Voelkel K, Witt M, Zietkiewicz E, Neesen J, Reinhardt R, Mitchison HM, Omran H. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008;83(5):547–58.

    Article  CAS  Google Scholar 

  82. Yang WX, Sperry AO. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod. 2003;69(5):1719–29.

    Article  CAS  Google Scholar 

  83. Chan SW, Fowler KJ, Choo KH, Kalitsis P. Spef1, a conserved novel testis protein found in mouse sperm flagella. Gene. 2005;353(2):189–99.

    Article  CAS  Google Scholar 

  84. Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature. 2010;464(7291):1048–51.

    Article  CAS  Google Scholar 

  85. Wen Q, Li N, Xiao X, Lui WY, Chu DS, Wong CKC, Lian Q, Ge R, Lee WM, Silvestrini B, Cheng CY. Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis. Cell Death Dis. 2018;9(2):208.

    Article  Google Scholar 

  86. Tapia Contreras C, Hoyer-Fender S. The WD40-protein CFAP52/WDR16 is a centrosome/basal body protein and localizes to the manchette and the flagellum in male germ cells. Sci Rep. 2020;10:14240.

    Article  CAS  Google Scholar 

  87. Lin YN, Roy A, Yan W, Burns KH, Matzuk MM. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol. 2007;27(19):6794–805.

    Article  CAS  Google Scholar 

  88. Inoue N, Hamada D, Kamikubo H, Hirata K, Kataoka M, Yamamoto M, Ikawa M, Okabe M, Hagihara Y. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development. 2013;140(15):3221–9.

    Article  CAS  Google Scholar 

  89. Kawano N, Araki N, Yoshida K, Hibino T, Ohnami N, Makino M, Kanai S, Hasuwa H, Yoshida M, Miyado K, Umezawa A. Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proc Natl Acad Sci USA. 2014;111(11):4145–50.

    Article  CAS  Google Scholar 

  90. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE. All four Catsper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci USA. 2007;104(4):1219–23.

    Article  CAS  Google Scholar 

  91. Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update. 2018;24(5):535–55.

    Article  CAS  Google Scholar 

  92. Lefievre L, de Lamirande E, Gagnon C. Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol Reprod. 2002;67:423–30.

    Article  CAS  Google Scholar 

  93. Fujihara Y, Murakami M, Inoue N, Satouh Y, Kaseda K, Ikawa M, Okabe M. Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. J Cell Sci. 2010;123(Pt 9):1531–6.

    Article  CAS  Google Scholar 

  94. Gao Z, Ruden DM, Lu X. PKD2 cation channel is required for directional sperm movement and male fertility. Curr Biol. 2003;13(24):2175–8.

    Article  CAS  Google Scholar 

  95. O’Hara L, Smith LB. Androgen receptor roles in spermatogenesis and infertility. Best Pract Res Clin Endocrinol Metab. 2015;29(4):595–605. https://doi.org/10.1016/j.beem.2015.04.006.

    Article  CAS  Google Scholar 

  96. Chung SS, Sung W, Wang X, Wolgemuth DJ. Retinoic acid receptor alpha is required for synchronization of spermatogenic cycles and its absence results in progressive breakdown of the spermatogenic process. Dev Dyn. 2004;230(4):754–66.

    Article  CAS  Google Scholar 

  97. Takase HM, Nusse R. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc Natl Acad Sci USA. 2016;113(11):E1489–97.

    Article  CAS  Google Scholar 

  98. Zhang L, Tang J, Haines CJ, Feng HL, Lai L, Teng X, Han Y. c-kit and its related genes in spermatogonial differentiation. Spermatogenesis. 2011;1(3):186–94.

    Article  Google Scholar 

  99. Danshina PV, Geyer CB, Dai Q, Goulding EH, Willis WD, Kitto GB, McCarrey JR, Eddy EM, O’Brien DA. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod. 2010;82(1):136–45.

    Article  CAS  Google Scholar 

  100. Raverot G, Weiss J, Park SY, Hurley L, Jameson JL. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol. 2005;283(1):215–25.

    Article  CAS  Google Scholar 

  101. Jiao X, Trifillis P, Kiledjian M. Identification of target messenger RNA substrates for the murine deleted in azoospermia-like RNA-binding protein. Biol Reprod. 2002;66(2):475–85.

    Article  CAS  Google Scholar 

  102. Xu WM, Chen J, Chen H, Diao RY, Fok KL, Dong JD, Sun TT, Chen WY, Yu MK, Zhang XH, Tsang LL, Lau A, Shi QX, Shi QH, Huang PB, Chan HC. Defective CFTR-dependent CREB activation results in impaired spermatogenesis and azoospermia. PLoS One. 2011;6(5):e19120.

    Article  CAS  Google Scholar 

  103. Boyer A, Zhang X, Levasseur A, Abou Nader N, St-Jean G, Nagano MC, Boerboom D. Constitutive activation of CTNNB1 results in a loss of spermatogonial stem cell activity in mice. PLoS One. 2021;16(5):e0251911.

    Article  CAS  Google Scholar 

  104. Kistler WS, Henriksén K, Mali P, Parvinen M. Sequential expression of nucleoproteins during rat spermiogenesis. Exp Cell Res. 1996;225(2):374–81.

    Article  CAS  Google Scholar 

  105. Browne JA, Leir SH, Eggener SE, Harris A. Region-specific microRNA signatures in the human epididymis. Asian J Androl. 2018;20(6):539–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shruti Sethi and Poonam Mehta would like to thank the University Grants Commission for graduate fellowship (191620102885/CSIR-UGC NET DEC.2019) and (460/CSIR-UGC NET DEC.2017), respectively.

Funding

The authors are thankful to the Council of Scientific and Industrial Research (CSIR) for funding this study under MLP2026.

Author information

Authors and Affiliations

Authors

Contributions

SR and GG conceived the idea. SS, PM, and AP have performed the experimental procedures. SS, PM, and RS have analysed the data. SS, PM, RS, and GG wrote the manuscript.

Corresponding author

Correspondence to Singh Rajender.

Ethics declarations

Ethics Approval

The study was approved by the institutional ethics committee of CSIR-CDRI (IAEC/2014/49/Renew03(135/16)) and the study was performed in accordance with the ethical standards as mentioned in 1964 Declaration of Helsinki and its later amendments.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, S., Mehta, P., Pandey, A. et al. miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis. Reprod. Sci. 29, 3477–3493 (2022). https://doi.org/10.1007/s43032-022-01005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01005-x

Keywords

Navigation