Skip to main content

Advertisement

Log in

Chromosomal Copy Number Variation Analysis in Pregnancy Products from Recurrent and Sporadic Miscarriage Using Next-Generation Sequencing

  • Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Chromosomal abnormality is one of the causes of fetal miscarriage. The potential differences of fetal chromosomal abnormalities in sporadic miscarriage (SM) and recurrent miscarriage (RM) remain unclear. The purpose of this study was to investigate copy number variations (CNVs) in SM and RM to provide useful genetic guidance for pregnancy and prenatal diagnosis. Four hundred eight samples of aborted fetuses were analyzed by CNV sequencing, and further functional enrichment analysis was performed. Chromosomal abnormalities were identified in 218 (53.4%) fetuses. There were 62 cases (15.2%) with structural chromosomal abnormalities, including 41 with VUS CNVs, 8 with pathogenic CNVs (pCNVs), and 5 with likely pCNVs. Duplications or deletions of 7p22, 8p22, 8p23, and Xp22.31 were significantly more common in RM cases and therefore believed to be related to RM. A total of 289 genes were identified, and 29 different functions were enriched as potential RM candidate genes and functions, which were mainly concentrated in 4 functional categories: chemokines and chemotaxis, protease activity and protein modification, defense response to bacterial and fungal infections, and immune response. The results of this study may improve our understanding of the etiology of RM and contribute to the establishment of a population-based genetic marker information for RM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. La X, Wang W, Zhang M, Liang L. Definition and multiple factors of recurrent spontaneous abortion. Adv Exp Med Biol. 2021;1300:231–57.

    Article  CAS  PubMed  Google Scholar 

  2. Hu CY, Yang XJ, Hua XG, Jiang W, Huang K, Chen HB, Zhang XJ. Risk factors for spontaneous abortion from a prevention perspective in rural China: a population-based follow-up study. J Matern Fetal Neonatal Med. 2021;34:2583–91.

    Article  PubMed  Google Scholar 

  3. Moghbeli M. Genetics of recurrent pregnancy loss among Iranian population. Mol Genet Genomic Med. 2019;7:e891.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Definitions of infertility and recurrent pregnancy loss. a committee opinion. Fertil Steril. 2020;113:533–5.

    Article  Google Scholar 

  5. Toth B, Würfel W, Bohlmann M, Zschocke J, Rudnik-Schöneborn S, Nawroth F, Schleußner E, Rogenhofer N, Wischmann T, von Wolff M, et al. Recurrent miscarriage: diagnostic and therapeutic procedures. Guideline of the DGGG, OEGGG and SGGG (S2k-Level, AWMF Registry Number 015/050). Geburtshilfe Frauenheilkd. 2018; 78:364–81

  6. Department of Obstetrics, Chinese Society of Obstetrics and Gynecology. Chinese expert consensus on the diagnosis and tretment of recurrent spontaneous abortion. Chin J Obstet Gynecol. 2016;51:3–9.

    Google Scholar 

  7. Chan C, Ryu M, Zwingerman R. Preimplantation genetic testing for aneuploidy: a Canadian Fertility and Andrology Society Guideline. Reprod Biomed Online. 2021;42:105–16.

    Article  CAS  PubMed  Google Scholar 

  8. Khambata K, Raut S, Deshpande S, Mohan S, Sonawane S, Gaonkar R, Ansari Z, Datar M, Bansal V, Patil A, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36:48–60.

    CAS  PubMed  Google Scholar 

  9. Bilal MY, Katara G, Dambaeva S. Clinical molecular genetics evaluation in women with reproductive failures. 2021; 85:e13313

  10. Colley E, Hamilton S, Smith P, Morgan NV, Coomarasamy A, Allen S. Potential genetic causes of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update. 2019;25:452–72.

    Article  CAS  PubMed  Google Scholar 

  11. Ibrahim Y, Hotaling J. Sperm epigenetics and its impact on male fertility, pregnancy loss, and somatic health of future offsprings. Semin Reprod Med. 2018;36:233–9.

    PubMed  Google Scholar 

  12. Wang Y, Li Y, Chen Y, Zhou R, Sang Z, Meng L, Tan J, Qiao F, Bao Q, Luo D, et al. Systematic analysis of copy-number variations associated with early pregnancy loss. Ultrasound Obstet Gynecol. 2020;55:96–104.

    Article  CAS  PubMed  Google Scholar 

  13. Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16:172–83.

    Article  CAS  PubMed  Google Scholar 

  14. Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet. 2019;65:1287–95.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Anderson LA, Ginns EI, Devlin JJ. Cost effectiveness of karyotyping, chromosomal microarray analysis, and targeted next-generation sequencing of patients with unexplained global developmental delay or intellectual disability. Mol Diagn Ther. 2018;22:129–38.

    Article  PubMed  Google Scholar 

  16. Martinez-Portilla RJ, Pauta M. Added value of chromosomal microarray analysis over conventional karyotyping in stillbirth work-up: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;53:590–7.

    Article  CAS  PubMed  Google Scholar 

  17. Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril. 2018;109:201–12.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao X, Fu L. Efficacy of copy-number variation sequencing technology in prenatal diagnosis. J Perinat Med. 2019;47:651–5.

    Article  PubMed  Google Scholar 

  19. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, Raca G, Ritter DI, South ST, Thorland EC, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22:245–57.

    Article  PubMed  Google Scholar 

  20. Brandt T, Sack LM. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22:336–44.

    Article  PubMed  Google Scholar 

  21. Arredondo F, Noble LS. Endocrinology of recurrent pregnancy loss. Semin Reprod Med. 2006;24:33–9.

    Article  CAS  PubMed  Google Scholar 

  22. Venetis CA, Papadopoulos SP, Campo R, Gordts S, Tarlatzis BC, Grimbizis GF. Clinical implications of congenital uterine anomalies: a meta-analysis of comparative studies. Reprod Biomed Online. 2014;29:665–83.

    Article  PubMed  Google Scholar 

  23. Leisher SH, Balalian AA, Reinebrant H, Shiau S, Flenady V, Kuhn L, Morse SS. Systematic review: fetal death reporting and risk in Zika-affected pregnancies. Trop Med Int Health. 2021;26:133–45.

    Article  CAS  PubMed  Google Scholar 

  24. Muyayalo KP, Li ZH, Mor G. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am J Reprod Immunol. 2018;80: e13018.

    Article  PubMed  Google Scholar 

  25. Lan L, She L, Zhang B, He Y, Zheng Z. Prenatal diagnosis of 913 fetuses samples using copy number variation sequencing. J Gene Med. 2021;23: e3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang T, Sun Y, Chen Z, Li T. Traditional and molecular chromosomal abnormality analysis of products of conception in spontaneous and recurrent miscarriage. BJOG. 2018;125:414–20.

    Article  CAS  PubMed  Google Scholar 

  27. Shen J, Wu W, Gao C, Ochin H, Qu D, Xie J, Gao L, Zhou Y, Cui Y, Liu J. Chromosomal copy number analysis on chorionic villus samples from early spontaneous miscarriages by high throughput genetic technology. Mol Cytogenet. 2016;9:7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nagirnaja L, Palta P, Kasak L, Rull K, Christiansen OB, Nielsen HS, Steffensen R, Esko T, Remm M, Laan M. Structural genomic variation as risk factor for idiopathic recurrent miscarriage. Hum Mutat. 2014;35:972–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai R, Xi Q, Wang R, Zhang H, Jiang Y, Li L, Liu R. Chromosomal copy number variations in products of conception from spontaneous abortion by next-generation sequencing technology. Medicine (Baltimore). 2019;98: e18041.

    Article  Google Scholar 

  30. Sheng YR, Hou SY, Hu WT, Wei CY, Liu YK, Liu YY, Jiang L, Xiang JJ, Sun XX, Lei CX, et al. Characterization of copy-number variations and possible candidate genes in recurrent pregnancy losses. Genes (Basel). 2021;12:141.

    Article  CAS  Google Scholar 

  31. Li FX, Xie MJ, Qu SF, He D, Wu L, Liang ZK, Wu YS, Yang F, Yang XX. Detection of chromosomal abnormalities in spontaneous miscarriage by low-coverage next-generation sequencing. Mol Med Rep. 2020;22:1269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu S, Song L, Cram DS, Xiong L, Wang K, Wu R, Liu J, Deng K, Jia B, Zhong M, Yang F. Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage. Ultrasound Obstet Gynecol. 2015;46:472–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wang MZ, Lin FQ, Li M, He D, Yu QH, Yang XX, Wu YS. Semiconductor sequencing analysis of chromosomal copy number variations in spontaneous miscarriage. Med Sci Monit. 2017;23:5550–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu H, Huang Q, Zhang X, Yu Z, Zhong Z. Analysis of genomic copy number variation in miscarriages during early and middle pregnancy. Front Genet. 2021;12: 732419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo S, Chen X, Yan T, Ya J, Xu Z, Cai P, Yuan D, Tang N. Application of copy number variation sequencing in genetic analysis of miscarriages in early and middle pregnancy. Cytogenet Genome Res. 2020;160:634–42.

    Article  CAS  PubMed  Google Scholar 

  36. Nagaoka K, Nojima H, Watanabe F, Chang KT, Christenson RK, Sakai S, Imakawa K. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem. 2003;278:29048–56.

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Zhu XY, Du MR, Li DJ. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J Immunol. 2008;180:2367–75.

    Article  CAS  PubMed  Google Scholar 

  38. Witkin SS, Linhares IM, Bongiovanni AM, Herway C, Skupski D. Unique alterations in infection-induced immune activation during pregnancy. BJOG. 2011;118:145–53.

    Article  CAS  PubMed  Google Scholar 

  39. Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol. 2014;72:129–40.

    Article  CAS  PubMed  Google Scholar 

  40. Tur-Torres MH, Garrido-Gimenez C, Alijotas-Reig J. Genetics of recurrent miscarriage and fetal loss. Best Pract Res Clin Obstet Gynaecol. 2017;42:11–25.

    Article  CAS  PubMed  Google Scholar 

  41. Szekeres-Bartho J, Šućurović S, Mulac-Jeričević B. The role of extracellular vesicles and PIBF in embryo-maternal immune-interactions. Front Immunol. 2018;9:2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D'Ippolito S, Tersigni C, Marana R, Di Nicuolo F, Gaglione R, Rossi ED, Castellani R, Scambia G, Di Simone N. Inflammosome in the human endometrium: further step in the evaluation of the "maternal side". Fertil Steril. 2016; 105:111–118.e111–114.

  43. Banzai M, Sato S, Matsuda H, Kanasugi H. Trisomy 1 in a case of a missed abortion. J Hum Genet. 2004;49:396–7.

    Article  PubMed  Google Scholar 

  44. Vatin M, Burgio G, Renault G, Laissue P, Firlej V, Mondon F, Montagutelli X, Vaiman D, Serres C, Ziyyat A. Refined mapping of a quantitative trait locus on chromosome 1 responsible for mouse embryonic death. PLoS ONE. 2012;7: e43356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, et al. Placental galectins are key players in regulating the maternal adaptive immune response. Front Immunol. 2019;10:1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat Res. 2020;785: 108320.

    Article  CAS  Google Scholar 

  47. Xanthopoulou L, Ghevaria H, Mantzouratou A, Serhal P, Doshi A, Delhanty JD. Chromosome breakage in human preimplantation embryos from carriers of structural chromosomal abnormalities in relation to fragile sites, maternal age, and poor sperm factors. Cytogenet Genome Res. 2012;136:21–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank other colleagues who were not listed in the authorship of Department of Laboratory Medicine, Center for Precision Medicine and Center for Prenatal Diagnosis, Meizhou People’s Hospital (Huangtang Hospital), for their helpful comments on the manuscript.

Funding

This study was supported by the Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population under Grant 2018B030322003; the Science and Technology Program of Meizhou under Grant 2019B0202001; and the Key Scientific and Technological Project of Meizhou People’s Hospital under Grant MPHKSTP-20190102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyan Huang.

Ethics declarations

Ethics Approval

This study was conducted on the basis of the Declaration of Helsinki and was supported by the Ethics Committee of the Meizhou People’s Hospital.

Consent to Participate

Each patient provided informed written consent, and the hospital’s ethics committees approved enrollment in the study.

Consent for Publication

Each participant had signed the consent form for the use of her personal data for research use and publication.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, H., Gu, Z. et al. Chromosomal Copy Number Variation Analysis in Pregnancy Products from Recurrent and Sporadic Miscarriage Using Next-Generation Sequencing. Reprod. Sci. 29, 2927–2936 (2022). https://doi.org/10.1007/s43032-022-00969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00969-0

Keywords

Navigation