Sabry M, Al-Hendy A. Medical treatment of uterine leiomyoma. Reprod Sci. 2012;19:339–53. https://doi.org/10.1177/1933719111432867.
CAS
Article
PubMed
PubMed Central
Google Scholar
Stewart EA, Laughlin-Tommaso SK, Catherino WH, et al. Uterine fibroids. Nat Rev Dis Primers. 2016;2:16043. https://doi.org/10.1038/nrdp.2016.43.
Article
PubMed
Google Scholar
Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308:1589–92. https://doi.org/10.1126/science.1112063.
CAS
Article
PubMed
Google Scholar
Bulun SE. Tissue stem cells and uterine physiology and pathology. Semin Reprod Med. 2015;33:313–4. https://doi.org/10.1055/s-0035-1563672.
Article
PubMed
Google Scholar
Jamaluddin MFB, Nahar P, Tanwar PS. Proteomic characterization of the extracellular matrix of human uterine fibroids. Endocrinology. 2018;159:2656–69. https://doi.org/10.1210/en.2018-00151.
CAS
Article
PubMed
Google Scholar
Cardozo ER, Clark AD, Banks NK, et al. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206(211):e211-219. https://doi.org/10.1016/j.ajog.2011.12.002.
Article
Google Scholar
Yang Q, Diamond MP and Al-Hendy A. Converting of myometrial stem cells to tumor-initiating cells: mechanism of uterine fibroid development. Cell Stem Cells Regen Med 2016; 2. https://doi.org/10.16966/2472-6990.e103.
Park MJ, Shen H, Kim NH, et al. Mediator kinase disruption in MED12-mutant uterine fibroids from hispanic women of south Texas. J Clin Endocrinol Metab. 2018;103:4283–92. https://doi.org/10.1210/jc.2018-00863.
Article
PubMed
PubMed Central
Google Scholar
Ono M, Qiang W, Serna VA, et al. Role of stem cells in human uterine leiomyoma growth. PLoS ONE. 2012;7: e36935. https://doi.org/10.1371/journal.pone.0036935.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mas A, Nair S, Laknaur A, et al. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers. Fertil Steril. 2015;104(225–234): e223. https://doi.org/10.1016/j.fertnstert.2015.04.021.
CAS
Article
Google Scholar
Al-Hendy A, Myers ER, Stewart E. Uterine fibroids: burden and unmet medical need. Semin Reprod Med. 2017;35:473–80. https://doi.org/10.1055/s-0037-1607264.
Article
PubMed
PubMed Central
Google Scholar
Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97. https://doi.org/10.1016/j.cell.2016.05.082.
CAS
Article
PubMed
Google Scholar
Huch M, Bonfanti P, Boj SF, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708–21. https://doi.org/10.1038/emboj.2013.204.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160:299–312. https://doi.org/10.1016/j.cell.2014.11.050.
CAS
Article
PubMed
PubMed Central
Google Scholar
Karthaus WR, Iaquinta PJ, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159:163–75. https://doi.org/10.1016/j.cell.2014.08.017.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kessler M, Hoffmann K, Brinkmann V, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989. https://doi.org/10.1038/ncomms9989.
CAS
Article
PubMed
Google Scholar
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72. https://doi.org/10.1053/j.gastro.2011.07.050.
CAS
Article
PubMed
Google Scholar
Bulun SE. Uterine fibroids. N Engl J Med. 2013;369:1344–55. https://doi.org/10.1056/NEJMra1209993.
CAS
Article
PubMed
Google Scholar
De Vivo A, Mancuso A, Giacobbe A, et al. Uterine myomas during pregnancy: a longitudinal sonographic study. Ultrasound Obstet Gynecol. 2011;37:361–5. https://doi.org/10.1002/uog.8826.
Article
PubMed
Google Scholar
Rosati P, Exacoustos C, Mancuso S. Longitudinal evaluation of uterine myoma growth during pregnancy. A sonographic study. J Ultrasound Med. 1992;11:511–5. https://doi.org/10.7863/jum.1992.11.10.511.
CAS
Article
PubMed
Google Scholar
Ilicic M, Zakar T, Paul JW. Modulation of progesterone receptor isoform expression in pregnant human myometrium. Biomed Res Int. 2017;2017:4589214. https://doi.org/10.1155/2017/4589214.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun C, Wang Z, Song W, et al. Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells. Oncol Lett. 2015;10:1769–74. https://doi.org/10.3892/ol.2015.3411.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chappell WH, Gautam D, Ok ST, et al. Homologous recombination repair factors Rad51 and BRCA1 are necessary for productive replication of human papillomavirus 31. J Virol. 2015;90:2639–52. https://doi.org/10.1128/JVI.02495-15.
CAS
Article
PubMed
Google Scholar
Tort F, Hernandez S, Bea S, et al. Checkpoint kinase 1 (CHK1) protein and mRNA expression is downregulated in aggressive variants of human lymphoid neoplasms. Leukemia. 2005;19:112–7. https://doi.org/10.1038/sj.leu.2403571.
CAS
Article
PubMed
Google Scholar
Zhang P, Wang J, Gao W, et al. CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer. 2004;3:14. https://doi.org/10.1186/1476-4598-3-14.
Article
PubMed
PubMed Central
Google Scholar
Foroughizadeh M, Mozdarani H, Majidzadeh AK, et al. Variation of ATM gene expression in peripheral blood cells of sporadic breast carcinomas in Iranian patients. Avicenna J Med Biotechnol. 2012;4:95–101.
CAS
PubMed
PubMed Central
Google Scholar
Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol. 2011;12:90–103. https://doi.org/10.1038/nrm3047.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ono M, Kajitani T, Uchida H, et al. OCT4 expression in human uterine myometrial stem/progenitor cells. Hum Reprod. 2010;25:2059–67. https://doi.org/10.1093/humrep/deq163.
CAS
Article
PubMed
Google Scholar
Ono M, Kajitani T, Uchida H, et al. CD34 and CD49f double-positive and lineage marker-negative cells isolated from human myometrium exhibit stem cell-like properties involved in pregnancy-induced uterine remodeling. Biol Reprod. 2015;93:37. https://doi.org/10.1095/biolreprod.114.127126.
CAS
Article
PubMed
PubMed Central
Google Scholar
Patterson AL, George JW, Chatterjee A, et al. Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell and endometrial stromal cell properties. Hum Reprod. 2020;35:44–57. https://doi.org/10.1093/humrep/dez247.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yin P, Ono M, Moravek MB, et al. Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metab. 2015;100:E601-606. https://doi.org/10.1210/jc.2014-2134.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mas A, Stone L, O’Connor PM, et al. Developmental exposure to endocrine disruptors expands murine myometrial stem cell compartment as a prerequisite to leiomyoma tumorigenesis. Stem Cells. 2017;35:666–78. https://doi.org/10.1002/stem.2519.
CAS
Article
PubMed
Google Scholar
Elkafas H, Ali M, Elmorsy E, et al. Vitamin D3 ameliorates DNA damage caused by developmental exposure to endocrine disruptors in the uterine myometrial stem cells of Eker rats. Cells 2020; 9. https://doi.org/10.3390/cells9061459.
Khan AT, Shehmar M, Gupta JK. Uterine fibroids: current perspectives. Int J Womens Health. 2014;6:95–114. https://doi.org/10.2147/IJWH.S51083.
Article
PubMed
PubMed Central
Google Scholar
Sparic R, Mirkovic L, Malvasi A, et al. Epidemiology of uterine myomas: a review. Int J Fertil Steril. 2016;9:424–35. https://doi.org/10.22074/ijfs.2015.4599.
Article
PubMed
Google Scholar
Fujisawa C, Castellot JJ Jr. Matrix production and remodeling as therapeutic targets for uterine leiomyoma. J Cell Commun Signal. 2014;8:179–94. https://doi.org/10.1007/s12079-014-0234-x.
Article
PubMed
PubMed Central
Google Scholar
Islam MS, Ciavattini A, Petraglia F, et al. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Hum Reprod Update. 2018;24:59–85. https://doi.org/10.1093/humupd/dmx032.
CAS
Article
PubMed
Google Scholar
Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013;34:130–62. https://doi.org/10.1210/er.2012-1043.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carneiro MM. Stem cells and uterine leiomyomas: what is the evidence? JBRA Assist Reprod. 2016;20:33–7. https://doi.org/10.5935/1518-0557.20160008.
Article
PubMed
Google Scholar
Ciarmela P, Islam MS, Reis FM, et al. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update. 2011;17:772–90. https://doi.org/10.1093/humupd/dmr031.
CAS
Article
PubMed
PubMed Central
Google Scholar
Commandeur AE, Styer AK, Teixeira JM. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum Reprod Update. 2015;21:593–615. https://doi.org/10.1093/humupd/dmv030.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang Q, Mas A, Diamond MP, et al. The mechanism and function of epigenetics in uterine leiomyoma development. Reprod Sci. 2016;23:163–75. https://doi.org/10.1177/1933719115584449.
CAS
Article
PubMed
Google Scholar
Maruyama T, Masuda H, Ono M, et al. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140:11–22. https://doi.org/10.1530/REP-09-0438.
CAS
Article
PubMed
Google Scholar
Mas A, Cervello I, Fernandez-Alvarez A, et al. overexpression of the truncated form of high mobility group A proteins (HMGA2) in human myometrial cells induces leiomyoma-like tissue formation. Mol Hum Reprod. 2015;21:330–8. https://doi.org/10.1093/molehr/gau114.
CAS
Article
PubMed
Google Scholar
Moravek MB, Bulun SE. Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Curr Opin Obstet Gynecol. 2015;27:276–83. https://doi.org/10.1097/GCO.0000000000000185.
Article
PubMed
PubMed Central
Google Scholar
Ono M, Maruyama T. Stem cells in myometrial physiology. Semin Reprod Med. 2015;33:350–6. https://doi.org/10.1055/s-0035-1563602.
CAS
Article
PubMed
Google Scholar
Ono M, Maruyama T, Masuda H, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104:18700–5. https://doi.org/10.1073/pnas.0704472104.
Article
PubMed
PubMed Central
Google Scholar
Cha PC, Takahashi A, Hosono N, et al. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet. 2011;43:447–50. https://doi.org/10.1038/ng.805.
CAS
Article
PubMed
Google Scholar
Medikare V, Kandukuri LR, Ananthapur V, et al. The genetic bases of uterine fibroids; a review. J Reprod Infertil. 2011;12:181–91.
CAS
PubMed
PubMed Central
Google Scholar
Makinen N, Vahteristo P, Kampjarvi K, et al. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;21:1300–3. https://doi.org/10.1038/ejhg.2013.33.
CAS
Article
PubMed
PubMed Central
Google Scholar
Santamaria X, Mas A, Cervello I, et al. Uterine stem cells: from basic research to advanced cell therapies. Hum Reprod Update. 2018;24:673–93. https://doi.org/10.1093/humupd/dmy028.
CAS
Article
PubMed
Google Scholar
Holdsworth-Carson SJ, Zaitseva M, Vollenhoven BJ, et al. Clonality of smooth muscle and fibroblast cell populations isolated from human fibroid and myometrial tissues. Mol Hum Reprod. 2014;20:250–9. https://doi.org/10.1093/molehr/gat083.
CAS
Article
PubMed
Google Scholar
Prusinski Fernung LE, Yang Q, Sakamuro D, et al. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol Reprod. 2018;99:735–48. https://doi.org/10.1093/biolre/ioy097.
Article
PubMed
PubMed Central
Google Scholar
Kim JJ, Sefton EC. The role of progesterone signaling in the pathogenesis of uterine leiomyoma. Mol Cell Endocrinol. 2012;358:223–31. https://doi.org/10.1016/j.mce.2011.05.044.
CAS
Article
PubMed
Google Scholar
Cermik D, Arici A, Taylor HS. Coordinated regulation of HOX gene expression in myometrium and uterine leiomyoma. Fertil Steril. 2002;78:979–84. https://doi.org/10.1016/s0015-0282(02)03366-6.
Article
PubMed
Google Scholar
Murphy LJ, Ghahary A. Uterine insulin-like growth factor-1: regulation of expression and its role in estrogen-induced uterine proliferation. Endocr Rev. 1990;11:443–53. https://doi.org/10.1210/edrv-11-3-443.
CAS
Article
PubMed
Google Scholar
Shimomura Y, Matsuo H, Samoto T, et al. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83:2192–8. https://doi.org/10.1210/jcem.83.6.4879.
CAS
Article
PubMed
Google Scholar
Navarro A, Bariani MV, Yang Q, et al. Understanding the impact of uterine fibroids on human endometrium function. Front Cell Dev Biol. 2021;9: 633180. https://doi.org/10.3389/fcell.2021.633180.
Article
PubMed
PubMed Central
Google Scholar
Masaki T. Endothelins: homeostatic and compensatory actions in the circulatory and endocrine systems. Endocr Rev. 1993;14:256–68. https://doi.org/10.1210/edrv-14-3-256.
CAS
Article
PubMed
Google Scholar
Maybin JA, Critchley HO. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update. 2015;21:748–61. https://doi.org/10.1093/humupd/dmv038.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tanfin Z, Breuiller-Fouche M. The endothelin axis in uterine leiomyomas: new insights. Biol Reprod. 2012;87(5):1–10. https://doi.org/10.1095/biolreprod.111.097725.
CAS
Article
Google Scholar
Morales MG, Acuna MJ, Cabrera D, et al. The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. J Cell Commun Signal. 2018;12:413–21. https://doi.org/10.1007/s12079-017-0409-3.
Article
PubMed
Google Scholar
Omar M, Laknaur A, Al-Hendy A, et al. Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids. BMC Womens Health. 2019;19:92. https://doi.org/10.1186/s12905-019-0795-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dassen H, Punyadeera C, Delvoux B, et al. Olfactomedin-4 regulation by estrogen in the human endometrium requires epidermal growth factor signaling. Am J Pathol. 2010;177:2495–508. https://doi.org/10.2353/ajpath.2010.100026.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee K, Jeong J, Kwak I, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet. 2006;38:1204–9. https://doi.org/10.1038/ng1874.
CAS
Article
PubMed
Google Scholar
Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE. Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci U S A. 2019;116(46):23132–42.
Malik M, Norian J, McCarthy-Keith D, et al. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010;28:169–79. https://doi.org/10.1055/s-0030-1251475.
Article
PubMed
Google Scholar
Moore AB, Yu L, Swartz CD, et al. Human uterine leiomyoma-derived fibroblasts stimulate uterine leiomyoma cell proliferation and collagen type I production, and activate RTKs and TGF beta receptor signaling in coculture. Cell Commun Signal. 2010;8:10. https://doi.org/10.1186/1478-811X-8-10.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28:180–203. https://doi.org/10.1055/s-0030-1251476.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tal R, Segars JH. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20:194–216. https://doi.org/10.1093/humupd/dmt042.
CAS
Article
PubMed
Google Scholar
Grantab RH, Tannock IF. Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer. 2012;12:214. https://doi.org/10.1186/1471-2407-12-214.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rogers R, Norian J, Malik M, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198(474):e471–e411. https://doi.org/10.1016/j.ajog.2007.11.057.
Article
Google Scholar