Skip to main content

Advertisement

Log in

Multiomics Analysis–Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All relevant data are included in the article.

References

  1. Stein IL, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–91.

    Article  Google Scholar 

  2. Wood JR, Dumesic DA, Abbott DH, Strauss JF. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92:705–13.

    Article  CAS  Google Scholar 

  3. Baker P, Balen A, Poston L, Sattar N. Proceedings of 53rd RCOG Study Group. London: RCOG Press; 2007. Obesity and Reproductive Health.

  4. Hamilton-Fairley D, Taylor A. Anovulation. BMJ 2003;327:546–9.

    Article  Google Scholar 

  5. De Leo V, Musacchio MC, Cappelli V, et al. Genetic, hormonal and metabolic aspects of PCOS: an update. Reproductive biology and endocrinology: RB&E. 2016;14:38.

    Article  Google Scholar 

  6. Azziz R, Woods KS, Reyna R, et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745–9.

    Article  CAS  Google Scholar 

  7. Agapova SE, Cameo T, Sopher AB, Oberfield SE. Diagnosis and challenges of polycystic ovary syndrome in adolescence. Semin Reprod Med. 2014;32:194–201.

    Article  Google Scholar 

  8. Kovanci E, Buster JE. Polycystic ovary syndrome. Clin Gynecol. 2015. Second Edition.

  9. Wolf WM, Wattick RA, Kinkade ON, Olfert MD. Geographical Prevalence of Polycystic OvarySyndrome as Determined by Region and Race/Ethnicity. Int J Environ Res Public Health. 2018;15:25892.

    Article  Google Scholar 

  10. Parker M, Warren A, Nair S, Barnard M. Adherence to treatment for polycystic ovarian syndrome: A systematic review. PLoS One. 2020;15:e0228586.

  11. Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women’s healthaspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRFJASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97:28–38.

    Article  Google Scholar 

  12. Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl Clin Genet. 2019;12:249–60.

    Article  Google Scholar 

  13. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106:6–15.

    Article  Google Scholar 

  14. Azziz R, Carmina E, Chen Z, Dunaif A, et al. Polycystic ovary syndrome. Nat Rev Dis Prim. 2016;2:16057.

    Article  Google Scholar 

  15. Ndefo UA, Eaton A, Green MR. Polycystic ovary syndrome: A review of treatment options with a focus on pharmacological approaches. Pharm Ther. 2013;38:336–55.

    Google Scholar 

  16. Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod. 2016;31:2841–55.

    Article  Google Scholar 

  17. Barthelmess EK, Naz RK. Polycystic ovary syndrome: current status and future perspective. Front Biosci (Elite Ed). 2014;6:104–19.

    Google Scholar 

  18. Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med. 2008;10:e3.

  19. Glintborg D. Endocrine and metabolic characteristics in polycystic ovary syndrome. Dan Med J. 2016;63:B5232.

    Google Scholar 

  20. Anagnostis P, Tarlatzis BC, Kau_man RP. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism. 2018;86:33-43.

  21. Rocha AL, Oliveira FR, Azevedo RC, Silva VA, Peres TM, et al. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Research. 2019;8-565.

  22. Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJ. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview. Int J Mol Sci. 2020;21:4853.

    Article  CAS  Google Scholar 

  23. Vassilatou E. Nonalcoholic fatty liver disease and polycystic ovary syndrome. World J Gastroenterol. 2014;20:8351–63.

    Article  Google Scholar 

  24. Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010;122:42–52.

    Article  CAS  Google Scholar 

  25. Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12:673–83.

    Article  CAS  Google Scholar 

  26. Deeks AA, Gibson-Helm ME, Paul E, Teede HJ. Is having poly-cystic ovary syndrome a predictor of poor psychological function including anxiety and depression? Hum Reprod. 2011;26:1399–407.

    Article  CAS  Google Scholar 

  27. Helvaci N, Karabulut E, Demir AU, Yildiz BO. Polycystic ovary syndrome and the risk of obstructive sleep apnea: a meta-analysis and review of the literature. Endocr Connect. 2017;6:437–45.

    Article  CAS  Google Scholar 

  28. Jones MR, Goodarzi MO. Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril. 2016;106:25–32.

    Article  Google Scholar 

  29. Marshall JC, Eagleson CA. Neuroendocrine aspects of polycystic ovary syndrome. Endocrinol Metab Clin N Am. 1999;28:295–324.

    Article  CAS  Google Scholar 

  30. Li H, He YL, Li R, Wong C, Sy B, Lam CW, Lam K, Peng HM, Mu S, Schooling M, et al. Age-specific reference ranges of serum anti-müllerian hormone in healthy women and its application in diagnosis of polycystic ovary syndrome: A population study. BJOG Int J Obstet Gynaecol. 2020;1271:720–8.

    Article  Google Scholar 

  31. Musmar S, Afaneh A, Mo’alla H. Epidemiology of polycystic ovary syndrome: a cross sectional study of university students at An-Najah national university-Palestine. Reprod Biol Endocrinol. 2013;11:47.

    Article  Google Scholar 

  32. Panidisa D, Tziomalosb K, Papadakisa E, Katsikisa I. Infertility Treatment in Polycystic Ovary Syndrome: Lifestyle Interventions, Medications, and Surgery. Front Horm Res Basel Karger. 2013;40:128–41.

    Article  Google Scholar 

  33. Chugh RM, Park HS, Esfandyari S, Elsharoud A, Ulin M, Al-Hendy A. Mesenchymal Stem Cells Secretome Regulates Steroidogenesis and Decreases Androgen Production in PCOS Cell Model via Secreting BMP-2. Fertil Steril. 2020;114:e403–4.

    Article  Google Scholar 

  34. Chen ZJ, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3–2p21 and 9q33.3. Nat Genet2011;43:55-59.

  35. Chang AY, Lalia AZ, Jenkins GD, et al. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome. Metabolism. 2017;71:52–63.

    Article  CAS  Google Scholar 

  36. Roe AH, Dokras A. The diagnosis of polycystic ovary syndrome in adolescents. Rev Obstet Gynecol. 2011;4:45–51.

    Google Scholar 

  37. Zhao H, Lv Y, Li L, Chen ZJ. Genetic Studies on Polycystic Ovary Syndrome. Best Pract Res Clin Obstet Gynaecol. 2016;37:56–65.

    Article  CAS  Google Scholar 

  38. Michelmore KF, Balen AH, Dunger DB, Vessey MP. Polycystic ovaries and associated clinical and biochemical features in young women. Clin Endocrinol. 1999;51:779–86.

    Article  CAS  Google Scholar 

  39. Asuncion M, Calvo RM, San Millan JL, Sancho J, Avila S, Escobar-Morreale HF. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab. 2000;85:2434–8.

    CAS  Google Scholar 

  40. Michelmore A, Bryant PM, Steele DA, Vasilev K, Bradley JW, Short RD. Role of positive ions in determining the deposition rate and film chemistry of continuous wave hexamethyl disiloxane plasmas. Langmuir. 2011;27(19):11943–50.

    Article  CAS  Google Scholar 

  41. Pepe MS, Janes H, Li CI, Bossuyt PM, Feng Z, Hilden J. Early-phase studies of biomarkers: What target sensitivity and specificity values might confer clinical utility? Clin Chem. 2016;62:737–42.

    Article  CAS  Google Scholar 

  42. Dhama K, Latheef SK, Dadar M, et al. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci. 2019;6:91.

    Article  CAS  Google Scholar 

  43. Shim U, Kim HN, Lee H, Oh JY, Sung YA, Kim HL. Pathway Analysis Based on a Genome-Wide Association Study of Polycystic Ovary Syndrome. PLoS One. 2015;10: e0136609.

  44. Shen H, Liang Z, Zheng S, Li X. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome. Int J Mol Med. 2017;40:1385–96.

    Article  CAS  Google Scholar 

  45. Concha CF, Sir PT, Recabarren SE, Pérez BF. Epigenetics of polycystic ovary syndrome. Rev Med Chil. 2017;145:907–15.

    Google Scholar 

  46. Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol. 2010;88(10):938–44.

    Article  CAS  Google Scholar 

  47. Ilie IR, Georgescu CE. Chapter two-polycystic ovary syndrome-epigenetic mechanisms and aberrant microRNA. Adv Clin Chem. 2015;71:25–45.

    Article  CAS  Google Scholar 

  48. Horgan RP, Kenny LC. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol. 2011;13:189–95.

    Article  Google Scholar 

  49. Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int J Mol Sci. 2021;22:1422.

    Article  CAS  Google Scholar 

  50. Vlachakis D, Mitsis Τ, Nicolaides N, Efthimiadou A, Giannakakis A, Bacopoulou F, Chrousos GP. Functions, pathophysiology and current insights of exosomal endocrinology (Review). Mol Med Rep. 2021;23(1):26.

    CAS  Google Scholar 

  51. Cortón M, Botella-Carretero JI, López JA, Camafeita E, San Millán JL, Escobar-Morreale HF, Peral B. Proteomic analysis of human omental adipose tissue in the polycystic ovary syndrome using two-dimensional difference gel electrophoresis and mass spectrometry. Hum Reprod. 2008;23:651–61.

    Article  Google Scholar 

  52. Insenser M, Martínez-García MÁ, Montes R, San-Millán JL, Escobar-Morreale HF. Proteomic analysis of plasma in the polycystic ovary syndrome identifies novel markers involved in iron metabolism, acute-phase response, and inflammation. J Clin Endocrinol Metab. 2010;95:3863–70.

    Article  CAS  Google Scholar 

  53. Atiomo W, Daykin CA. Metabolomic biomarkers in women with polycystic ovary syndrome: a pilot study. Mol Hum Reprod. 2012;18:546–53.

    Article  CAS  Google Scholar 

  54. Haoula Z, Ravipati S, Stekel DJ, Ortori CA, Hodgman C, Daykin C, et al. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics. 2015;11:657–66.

    Article  CAS  Google Scholar 

  55. Meikle PJ, Christopher MJ. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr Opin Lipidol. 2011;22:210–5.

    Article  CAS  Google Scholar 

  56. Vonica CL, Ilie IR, Socaciu C, Moraru C, et al. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography-quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scand J Clin Lab Invest. 2019;79(6):437–42.

    Article  CAS  Google Scholar 

  57. Zhang Z, Liu Y, Lv J, Zhang D, et al. Differential Lipidomic Characteristics of Children Born to Women with Polycystic Ovary Syndrome. Front. Endocrinol. 2021;12:698734.

  58. Karahalil B. Overview of Systems Biology and Omics Technologies. Curr Med Chem. 2016;23:4221–30.

    Article  CAS  Google Scholar 

  59. Legro R, et al. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl AcadSci (USA). 1998;95:14956–60.

    Article  CAS  Google Scholar 

  60. Strauss JF 3rd, et al. Persistence pays off for PCOS gene prospectors. J Clin Endocrinol Metab. 2012;97:2286–8.

    Article  CAS  Google Scholar 

  61. Franks S, McCarthy M. Genetics of ovarian disorders: polycystic ovary syndrome. Rev Endocr Metab Disord. 2004;5:69–76.

    Article  CAS  Google Scholar 

  62. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44:1020–5.

    Article  CAS  Google Scholar 

  63. Li L, Baek KH. Molecular genetics of polycystic ovary syndrome: An update. Curr Mol Med. 2015;15(4):331–42.

    Article  Google Scholar 

  64. Afiqah-Aleng N, Mohamed-Hussein ZA. Computational Systems Biology Approach on Polycystic Ovarian Syndrome (PCOS). J Mol Genet Med. 2019;13:392.

    Google Scholar 

  65. McAllister JM , Legro RS, Bhavi P Modi , BP Strauss 3rd JF. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab. 2015;26:118-24.

  66. Hong Sh, Hong YS, Jeong K, et al. Relationship between the characteristic traits of polycystic ovary syndrome and susceptibility genes. Sci Rep 2020;10:10479.

    Article  CAS  Google Scholar 

  67. Lee H, et al. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod. 2015;30:723–31.

    Article  CAS  Google Scholar 

  68. Hwang JY, Lee EJ, Jin GM, et al. Genome-wide association study identifies GYS2 as a novel genetic factor for polycystic ovary syndrome through obesity-related condition. J Hum Genet. 2012;57:660–4.

    Article  CAS  Google Scholar 

  69. Lu C, Liu X, Wang L, et al. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles. Oncotarget. 2017;8:3170–80.

    Article  Google Scholar 

  70. Dadachanji R, Shaikh N, Mukherjee S. Genetic Variants Associated with Hyperandrogenemia in PCOS Pathophysiology. Genet Res Int. 2018;7624932.

  71. Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, Panidis D. Genetics of polycystic ovary syndrome. Hippokratia. 2009;13:216–23.

    CAS  Google Scholar 

  72. Rutter GA, Parton LE. The beta-cell in type 2 diabetes and in obesity. Front Horm Res. 2008;36:118–34.

    Article  CAS  Google Scholar 

  73. Li T, Wu K, You L, et al. Common variant rs9939609 in gene FTO confers risk to polycystic ovary syndrome. PLoS One. 2013;8:e66250.

  74. Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100060.

  75. Sreenan SK, Zhou Y, Otani K, et al. Calpains play a role in insulin secretion and action. Diabetes. 2001;50:2013–20.

    Article  CAS  Google Scholar 

  76. Suzuki K, Hata S, Kawabata Y, Sorimachi H. Structure, Activation, and Biology of Calpain. Diabetes. 2004;53:S12–8.

    Article  CAS  Google Scholar 

  77. Goldfine DBA Maddux JF, Youngren et al. The role of membrane glycoprotein plasma cell antigen 1/ ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities. Endocrine Reviews. 2008;29:62-75.

  78. Lerner LA, Owens M, Coates C, Simpson G, Poole J, Velupillai M, Liyanage G, Christopoulos S, Lavery K, Hardy S. Expression of genes controlling steroid metabolism and action in granulosa-lutein cells of women with polycystic ovaries. Mol Cell Endocrinol. 2019;486:47–54.

    Article  CAS  Google Scholar 

  79. Thangavelu M, Godla UR, Paul Solomon FD, Maddaly R. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. J Genet. 2017;96(1):87–96.

    Article  CAS  Google Scholar 

  80. Siegel S, Futterweit W, Davies TF, Concepcion ES, Greenberg DA, Villanueva R, Tomer Y. A c/t single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome. Fertil Steril. 2002;78(6):1240–3.

    Article  Google Scholar 

  81. Marat AL, Dokainish H, McPherson PS. Denn domain proteins: regulators of rab gtpases. J Biol Chem. 2011;286(16):13791–800.

    Article  CAS  Google Scholar 

  82. Seto-Young D, Avtanski D, Strizhevsky M, et al. Interactions among peroxisome proliferator activated receptor-γ, insulin signaling pathways, and steroidogenic acute regulatory protein in human ovarian cells. J Clin Endocrinol Metab. 2007;92:2232–9.

    Article  CAS  Google Scholar 

  83. Gonz´alez JL, S´anchez M, Serrano Ríos C, Fern´andez Perez M, Laakso MT, Martínez L. Effect of the pro12ala polymorphism of the peroxisome proliferator-activated receptor gamma-2 gene on adiposity, insulin sensitivity and lipid profile in the spanish population, Eur. J. Endocrinol. 2002;147(4):495-501.

  84. Ke, Lu & Che, Ye-Na & Cao, et al. Polymorphisms of the HSD17B6 and HSD17B5 Genes in Chinese Women with Polycystic Ovary Syndrome. Journal of women's health. 2010;19:2227-32.

  85. Ferrero H, Díaz-Gimeno P. Sebasti´an-Le´on P, Faus A, G´omez R, Pellicer A, Dysregulated genes and their functional pathways in luteinized granulosa cells from pcos patients after cabergoline treatment. Reproduction. 2018;155(4):373–81.

    Article  CAS  Google Scholar 

  86. Bouazzi L, Sproll P, Eid W, et al. The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep. 2019;9:17033.

    Article  Google Scholar 

  87. Jones MR, Chua A, Chen YD, Li X, Krauss RM, Rotter JI, Legro RS, Azziz R, Goodarzi MO. Harnessing expression data to identify novel candidate genes in polycystic ovary syndrome. PLoS ONE. 2011;6(5):20120.

    Article  Google Scholar 

  88. Gulbay G, Yesilada E, Celik O, Yologlu S. The investigation of polymorphisms in DNA repair genes (xrcc1, ape1 and xpd) in women with polycystic ovary syndrome. Asian Pac J Cancer Prev. 2017;18(5):1219–23.

    Google Scholar 

  89. Xiong Y, Bian C, Lin X, Wang X, Xu K, Zhao X. Methylenetetrahydrofolate reductase gene polymorphisms in the risk of polycystic ovary syndrome and ovarian cancer. Biosci Rep. 2020;40:7.

    Article  Google Scholar 

  90. Day F, Karaderi T, Jones MR, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria PLoS Genet. 2018; 14:e1007813.Published correction appears in PLoS Genet. 2019;5;15(12):e1008517.

  91. Zhu X, Hong X, Chen L, Xuan Y Huang K, Wang B. Association of methylene tetrahydrofolate reductase C677T and A1298C polymorphisms with genetic susceptibility to polycystic ovary syndrome: APRISMA-compliant meta-analysis. Gene 2019;719:144079.

  92. Dakshinamoorthy J, Jain PR, Ramamoorthy T, Ayyappan R, Balasundaram U. Association of GWAS identified INSR variants (rs2059807 & rs1799817) with polycystic ovarian syndrome in Indian women. Int J Biol Macromol. 2020;144:663–70.

    Article  CAS  Google Scholar 

  93. Bogari NM. Genetic construction between polycystic ovarian syndrome and type 2 diabetes. Saudi J Biol Sci. 2020;27:2539–43.

    Article  CAS  Google Scholar 

  94. Diamanti-Kandarakis E, Bartzis MI, Bergiele AT, Tsianateli TC, Kouli CR. Microsatellite polymorphism (tttta)(n) at -528 base pairs of gene CYP11alpha influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril. 2000;73:735–41.

    Article  CAS  Google Scholar 

  95. Wang Y, Wu X, Cao Y, Yi L, Chen J. A microsatellite polymorphism (tttta)n in the promoter of the CYP11a gene in Chinese women with polycystic ovary syndrome. Fertil Steril. 2006;86:223–6.

    Article  CAS  Google Scholar 

  96. Joseph SBR, Bhujbalrao R, Idicula-Thomas S. PCOSKB: a Knowledge Base on genes, diseases, ontology terms and biochemical pathways associated with Poly Cystic Ovary Syndrome. Nucl Acids Res. 2016;44:D1032–5.

    Article  CAS  Google Scholar 

  97. Barber TM, Franks S. Genetics of polycystic ovary syndrome. Front Horm Res. 2013;40:28–39.

    Article  CAS  Google Scholar 

  98. Naderpoor N, Shorakae S, Joham A, Boyle J, De Courten B, Teede HJ. Obesity and polycystic ovary syndrome. Minerva Endocrinol. 2015;40:37–51.

    CAS  Google Scholar 

  99. Yen HW, Jakimiuk AJ, Munir I, Magoffin DA. Selective alterations in insulin receptor substrates -1,-2 and -4 in theca but not granulosa cells from polycystic ovaries. Mol Hum Reprod. 2004;10:473–9.

    Article  CAS  Google Scholar 

  100. Urbanek M, Legro RS, Driscoll DA, et al. Thirty-seven candidate genes for polycystic ovary syndrome: Strongest evidence for linkage is with follistatin. Proc Natl Acad Sci USA. 1999;96:8573–8.

    Article  CAS  Google Scholar 

  101. Hara M, Alcoser SY, Qaadir A, Beiswenger KK, Cox NJ, Ehrmann DA. Insulin resistance is attenuated in women with polycystic ovary syndrome with the Pro (12) Ala polymorphism in the PPARgamma gene. J Clin Endocrinol Metab. 2002;87:772–5.

    CAS  Google Scholar 

  102. Korhonen S, Heinonen S, Hiltunen M, et al. Polymorphism in the peroxisome proliferator-activated receptor-γ gene in women with polycystic ovary syndrome. Hum Reprod. 2003;18:540–3.

    Article  CAS  Google Scholar 

  103. Koika V, Marioli DJ, Saltamavros AD, et al. Association of the Pro12Ala polymorphism in peroxisome proliferator activated receptor γ2 with decreased basic metabolic rate in women with polycystic ovary syndrome. Eur J Endocrinol. 2009;16:317–22.

    Article  Google Scholar 

  104. Mao Z, Li T, Zhao H, et al. Identification of epigenetic interactions between microRNA and DNA methylation associated with polycystic ovarian syndrome. J Hum Genet. 2021;66:123–37.

    Article  CAS  Google Scholar 

  105. Vázquez-Martínez ER, et al. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction. 2019;158:R27–40.

    Article  Google Scholar 

  106. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.

    Article  CAS  Google Scholar 

  107. Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts. 2017;8:203–12.

    Article  CAS  Google Scholar 

  108. Barber TM, Hanson P, Weickert MO, Franks S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042.

    Article  Google Scholar 

  109. Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril. 2015;104:145–53.

    Article  CAS  Google Scholar 

  110. Xu J, Bao X, Peng Z, Wang L, Du L, Niu W, Sun Y. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell. Oncotarget. 2016;7:27899–909.

    Article  Google Scholar 

  111. Kokosar M, Benrick A, Perfilyev A, et al. Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome. Sci Rep. 2016;6:22883.

    Article  CAS  Google Scholar 

  112. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14:270–84.

    Article  Google Scholar 

  113. Edgar Ricardo VM, Yadira Inés GV, Elizabeth GG, Christian RM, Enrique RM, Ignacio CA, et al. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction. 2019;158:R27–40.

    Article  Google Scholar 

  114. Guo H, Zhu P, Yan L, Li R, Hu B, et al. The DNA methylation landscape of human early embryos. Nature. 2014;51:606–10.

    Article  Google Scholar 

  115. Mimouni NEH, Paiva I, Barbotin AL, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab. 2021;33(3):513-530.e8.

    Article  CAS  Google Scholar 

  116. Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology. 2019;160(10):2471–84.

    Article  CAS  Google Scholar 

  117. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  Google Scholar 

  118. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    Article  CAS  Google Scholar 

  119. Qu F, Wang FF, Yin R, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med. 2012;90:911–23.

    Article  CAS  Google Scholar 

  120. Wang XX, Wei JZ, Jiao J, Jiang SY, Yu DH, Li D. Genome-wide DNA methylation and gene expression patterns provide insight into polycystic ovary syndrome development. Oncotarget. 2014;5:6603–10.

    Article  Google Scholar 

  121. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  Google Scholar 

  122. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.

    Article  CAS  Google Scholar 

  123. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol. 2003;3:344–51.

    Article  CAS  Google Scholar 

  124. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14:367–78.

    Article  CAS  Google Scholar 

  125. Qin Y, Li T, Zhao H, Mao Z, Ding C, & Kang Y. Integrated Transcriptomic and Epigenetic Study of PCOS: Impact of Map3k1 and Map1lc3a Promoter Methylation on Autophagy. Frontiers in genetics. 2021;12:620241.

  126. Heidecker B, Hare JM. The use of transcriptomic biomarkers for personalized medicine. Heart Fail Rev. 2007;12:1–11.

    Article  CAS  Google Scholar 

  127. Trang P, Weidhaas JB, Slack FJ. MicroRNAs and cancer. In: Coleman W, Tsongalis G, editors. The Molecular Basis of Human Cancer. New York, NY: Humana Press;2017.

  128. Tian Y, Xu J, Du X, Fu X. The interplay between noncoding RNAs and insulin in diabetes. Cancer Lett. 2018;419:53–63.

    Article  CAS  Google Scholar 

  129. Qian Y, Chengliang Z, Jiexue P, Huanghe F. Research advances in the roles of ncRNAs in polycystic ovary syndrome. J Shanghai Jiaotong Univ (Chin Ed). 2016;36:921–5.

    Google Scholar 

  130. Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, Tesfaye D, Tsang BK. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res. 2013;6:36.

    Article  CAS  Google Scholar 

  131. Fu LL, Xu Y, Li DD, et al. Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing. Gene. 2018;657:19–29.

    Article  CAS  Google Scholar 

  132. Zhang F, Li S, Zhang T, Yu B, Zhang J, Ding H, Ye F, Yuan H, Ma Y, Pan H, He Y. High throughput microRNAs sequencing profile of serum exosomes in women with and without polycystic ovarian syndrome. PeerJ. 2021;9:e10998.

  133. Schulze A, Downward J. Navigating gene expression using microarrays – A technology review. Nat Cell Biol. 2001;3:E190–5.

    Article  CAS  Google Scholar 

  134. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    Article  CAS  Google Scholar 

  135. Sørensen AE, Wissing ML, Salö S, Englund ALM, Dalgaard LT. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 2014;5:684–708.

    Article  Google Scholar 

  136. Cirillo F, Catellani C, Lazzeroni P, Sartori C, Nicoli A, Amarri S, La Sala GB, Street ME. MiRNAs Regulating Insulin Sensitivity Are Dysregulated in Polycystic Ovary Syndrome (PCOS) Ovaries and Are Associated With Markers of Inflammation and Insulin Sensitivity. Front Endocrinol (Lausanne). 2019;10:879.

    Article  Google Scholar 

  137. Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31:355–62.

    Article  Google Scholar 

  138. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L. Identification of microRNAs in human follicular fluid: Characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98:3068–79.

    Article  CAS  Google Scholar 

  139. Naji M, Aleyasin A, Nekoonam S. et al. Differential Expression of miR-93 and miR-21 in Granulosa Cells and Follicular Fluid of Polycystic Ovary Syndrome Associating with Different Phenotypes. Sci Rep. 2017;7:14671.

  140. Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, Shabani Nashtaei M, Amidi F. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet. 2018;297:221–31.

    Article  CAS  Google Scholar 

  141. Xu B, Zhang YW, Tong XH, Liu YS. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26–36.

    Article  CAS  Google Scholar 

  142. Li D, Xu D, Xu Y, Chen L, Li C, Dai X, Zhang L, Zheng L. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct. 2017;35:197–201.

    Article  CAS  Google Scholar 

  143. Shao S, Wang H, Shao W, Liu N. Mir-199a-5p stimulates ovarian granulosa cell apoptosis in polycystic ovary syndrome. J Mol Endocrinol. 2020;65(4):187–201.

    Article  CAS  Google Scholar 

  144. Huang X, Hao C, Bao H, Wang M, Dai H. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients. J Assist Reprod Genet. 2016;33:111–21.

    Article  Google Scholar 

  145. Bouckenheimer J, Fauque P, Lecellier CH, Bruno C, Commes T, Lemaître JM, et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep. 2018;8:1–13.

    Article  CAS  Google Scholar 

  146. Qin L, Huang CC, Yan XM, Wang Y, Li ZY, Wei XC. Long non-coding RNA H19 is associated with polycystic ovary syndrome in Chinese women: a preliminary study. Endocr J. 2019;66:587–95.

    Article  CAS  Google Scholar 

  147. Xu XF, Li J, Cao YX, Chen DW, Zhang ZG, He XJ, et al. Differential Expression of Long Noncoding RNAs in Human Cumulus Cells Related to Embryo Developmental Potential. Reprod Sci. 2015;22:672–8.

    Article  CAS  Google Scholar 

  148. Wang L, Liang R, Tang Q, Zhu L. An Overview of Systematic Reviews of Using Chinese Medicine to Treat Polycystic Ovary Syndrome. Evid Based Complement Alternat Med. 2021;9935536.

  149. Liu Y, Ying L, Shu-xian F, De-sheng Y, Xin C, Xing-yu Z, Shi-ling C. Long Noncoding RNAs: Potential Regulators Involved in the Pathogenesis of Polycystic Ovary Syndrome. Endocrinology. 2017;158:3890–9.

    Article  CAS  Google Scholar 

  150. Liu G, Liu S, Xing G, et al. LncRNA PVT1/MicroRNA-17-5p/PTEN Axis Regulates Secretion of E2 and P4, Proliferation, and Apoptosis of Ovarian Granulosa Cells in PCOS. Mol Ther Nucleic Acids. 2020;20:205–16.

    Article  Google Scholar 

  151. Liu M, Zhu HQ, Li Y, et al. Expression of serum lncRNA-Xist in patients with polycystic ovary syndrome and its relationship with pregnancy outcome. Taiwan J Obstet Gynecol. 2020;59:372–6.

    Article  Google Scholar 

  152. Yang R, Chen J, Wang L, Deng A. LncRNA BANCR participates in polycystic ovary syndrome by promoting cell apoptosis. Mol Med Rep. 2019;19:1581–6.

    CAS  Google Scholar 

  153. Liu Q, Sun S, Yu W, Jiang J, Zhuo F, Qiu G, Xu S, Jiang X. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells. J Neurooncol. 2015;122:283–92.

    Article  CAS  Google Scholar 

  154. Alimoradi N, Firouzabadi N, Fatehi R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs, Biomedicine & Pharmacotherapy 2021;139:111662.

  155. Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A long noncoding RNA, lncRNA-Amhr2, plays a role in Amhr2 gene activation in mouse ovarian granulosa cells. Endocrinology. 2017;158:4105–21.

    Article  CAS  Google Scholar 

  156. Che Q, Liu M, Zhang D, Lu Y, Xu J, Lu X, Cao X, Liu Y, Dong X, Liu S. Long Noncoding RNA HUPCOS Promotes Follicular Fluid Androgen Excess in PCOS Patients via Aromatase Inhibition. J Clin Endocrinol Metab. 2020;105:dgaa060.

  157. Zhao Y, Tao M, Wei M, Du S, Wang H, Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome [PCOS]. Artif Cells Nanomed Biotechnol. 2019;47:3804–13.

    Article  CAS  Google Scholar 

  158. Wijaya AD, Febri RR, Desmawati, Hestiantoro A, & Asmarinah. DNA methylation analysis of anti-mullerian hormone gene in ovarian granulosa cells in PCOS patients. Journal of Physics: Conference Series2018;107:032077.

  159. Yin M, Wang X, Yao G, Lu M, Liang M, Sun Y, Sun F. Transactivation of miR-320 by miR-383 regulates granulosa cell functions by targeting E2F1 and SF-1. J Biol Chem. 2014;289(26):18239–57.

    Article  CAS  Google Scholar 

  160. Zhong Z, Li F, Li Y, Qin S, Wen C, Fu Y, Xiao Q. Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome. Mol Med Rep. 2018;17:4889–98.

    CAS  Google Scholar 

  161. Lin J, Huang H, Lin L, Li W, Huang J. Mir-23a induced the activation of cdc42/ pak1 pathway and cell cycle arrest in human cov434 cells by targeting fgd4. J Ovarian Res. 2020;13(1):90.

    Article  CAS  Google Scholar 

  162. Zhu HL, Chen YQ, Zhang ZF. Downregulation of lncrna zfas1 and upregulation of microrna-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating hmgb1. Genomics. 2020;112(5):3597–608.

    Article  CAS  Google Scholar 

  163. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283:31079–86.

    Article  CAS  Google Scholar 

  164. Yao G, Liang M, Liang N, Yin M, Lü M, Lian J, Wang Y, Sun F. MicroRNA-224 Is involved in the regulation of mouse cumulus expansion by targeting ptx3. Mol Cell Endocrinol. 2014;382:244–53.

    Article  CAS  Google Scholar 

  165. Han XM, Tian PY, Zhang JL. Microrna-486-5p inhibits ovarian granulosa cell proliferation and participates in the development of pcos via targeting mst4. Eur Rev Med Pharm Sci. 2019;23(17):7217–23.

    Google Scholar 

  166. Gao L, Wu D, Wu Y, Yang Z, Sheng J, Lin X, Huang H. Mir-3940-5p promotes granulosa cell proliferation through targeting kcna5 in polycystic ovarian syndrome. Biochem Biophys Res Commun. 2020;524(4):791–7.

    Article  CAS  Google Scholar 

  167. Jiao J, Shi B, Wang TR, et al. Characterization of long non-coding RNA and messenger RNA profiles in follicular fluid from mature and immature ovarian follicles of healthy women and women with polycystic ovary syndrome. Hum Reprod. 2018;33:1735–48.

    Article  CAS  Google Scholar 

  168. Lanz RB, Chua SS, Barron N, Soder BM, DeMayo F, O’Malley BW. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol. 2003;23:7163–76.

    Article  CAS  Google Scholar 

  169. Zhao X, Patton JR, Davis SL, Florence B, Ames SJ, Spanjaard RA. Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator. Mol Cell. 2004;15:549–58.

    Article  CAS  Google Scholar 

  170. Chen Y, Zhang X, An Y, et al. LncRNA HCP5 promotes cell proliferation and inhibits apoptosis via miR27a-3p/IGF-1 axis in human granulosa-like tumor cell line KGN. Mol Cell Endocrinol 2020;503:110697.

  171. Ying L, Shi-ling C. Upregulation of the long non-coding RNA TUG1 inhibits granulosa cell apoptosis and autophagy in polycystic ovary syndrome by regulating ERK/MAPK pathway. Fertil Steril. 2019;ASEM Abstr:245-6.

  172. Huang X, Pan J, Wu B, Teng X. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS. Reprod Biol Endocrinol. 2018;16:73.

    Article  Google Scholar 

  173. Zhang D, Yuan TH, Tan L, et al. MALAT1 is involved in the pathophysiological process of PCOS by modulating TGFβ signaling in granulosa cells. Mol Cell Endocrinol 2020;499:110589.

  174. Chen DL, Shen DY, Han CK, Tian Y. LncRNA MEG3 aggravates palmitate-induced insulin resistance by regulating miR-185-5p/Egr2 axis in hepatic cells. European review for medical and pharmacological. sciences. 2019;23:5456-5467.

  175. Tsai MC, Manor O, Wan Y, et al. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science. 2010;329:689–93.

    Article  CAS  Google Scholar 

  176. Guo H, Li T, Sun X. Lncrna hotairm1, mir-433-5p and pik3cd function as a cerna network to exacerbate the development of pcos. J Ovarian Res. 2021;14(1):19.

    Article  CAS  Google Scholar 

  177. Gould SJ, Raposo G. As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2:20389.

    Article  Google Scholar 

  178. Kalluri R, LeBleu VS.The biology, function, and biomedical applications of exosomes. Science 2020;367:eaau6977.

  179. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Tvall JOL. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  Google Scholar 

  180. Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: Current perspectives. Proteomics. 2008;8:4083–99.

    Article  CAS  Google Scholar 

  181. Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89:205–12.

    Article  CAS  Google Scholar 

  182. Esfandyari S, Elkafas H, Chugh RM, Park H, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci. 2021;22:2165.

    Article  CAS  Google Scholar 

  183. Hu J, Tang T, Zeng Z, Wu J, Tan X, Yan J. The expression of small RNAs in exosomes of follicular fluid altered in human polycystic ovarian syndrome. PeerJ. 2020;8:e8640.

  184. Thomson T, Lin H. The Biogenesis and Function of PIWI Proteins and piRNAs: Progress and Prospect. Annu Rev Cell Dev Biol. 2009;25:355–76.

    Article  CAS  Google Scholar 

  185. Li H, Huang X, Chang X, Yao J, He Q, Shen Z, Ji Y, Wang K. S100–a9 protein in exosomes derived from follicular fluid promotes inflammation via activation of nf-kappab pathway in polycystic ovary syndrome. J Cell Mol Med. 2020;24(1):114–25.

    Article  Google Scholar 

  186. Rocha ALL, Faria LC, Guimarães TCM, Moreira GV, Cândido AL, Couto CA, Reis FM. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: Systematic review andmeta-analysis. J Endocrinol Invest. 2017;40:1279–88.

    Article  CAS  Google Scholar 

  187. Mosley JD, Benson MD, Smith JG, Melander O, et al. Probing the Virtual Proteome to Identify Novel Disease Biomarkers. Circulation. 2018;138:2469–81.

    Article  CAS  Google Scholar 

  188. Insenser M, Escobar-Morreale HF. Proteomics and polycystic ovary syndrome. Expert Rev Proteomics. 2013;10:435–47.

    Article  CAS  Google Scholar 

  189. Galazis N, Pang YL, Galazi M, Haoula Z, Layfield R, Atiomo W. Proteomic biomarkers of endometrial cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration. Gynecol Endocrinol. 2013;29:638–44.

    Article  CAS  Google Scholar 

  190. Ma X, Fan L, Meng Y, Hou Z, Mao YD, Wang W, et al. Proteomic analysis of human ovaries from normal and polycystic ovarian syndrome. Mol Hum Reprod. 2007;13:527–35.

    Article  CAS  Google Scholar 

  191. Misiti S, Stigliano A, Borro M, Gentile G, Michienzi S, Cerquetti L, et al. Proteomic profiles in hyperandrogenic syndromes. J Endocrinol Invest. 2010;33(3):156–64.

    Article  CAS  Google Scholar 

  192. Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20:535–82.

    Article  CAS  Google Scholar 

  193. Moghetti P, Castello R, Negri C, Tosi F, Spiazzi GG, Brun E, et al. Insulin infusion amplifies 17 alpha-hydroxycorticosteroid intermediates response to adrenocorticotropin in hyperandrogenic women: apparent relative impairment of 17,20-lyase activity. J Clin Endocrinol Metab. 1996;81:881–6.

    CAS  Google Scholar 

  194. Dunaif A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.

    CAS  Google Scholar 

  195. Mukherjee S, Shaikh N, Khavale S, et al. Genetic variation in exon 17 of INSR is associated with insulin resistance and hyperandrogenemia among lean Indian women with polycystic ovary syndrome. Eur J Endocrinol. 2009;160:855–62.

    Article  CAS  Google Scholar 

  196. Escobar-Morreale HF, Luque-Ramírez M, González F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril. 2011;95:1048–58.

    Article  CAS  Google Scholar 

  197. Ruan X, Dai Y. Study on chronic low-grade inflammation and influential factors of polycystic ovary syndrome. Med Princ Pract. 2009;18:118–22.

    Article  Google Scholar 

  198. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman R, Taylor AE, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil Steril. 2009;91:456–88.

    Article  Google Scholar 

  199. Polak K, Czyzyk A, Simoncini T, Meczekalski B. New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Invest. 2017;40(1):1–8.

    Article  CAS  Google Scholar 

  200. Taskin MI, Bulbul E, Adali E, Hismiogulları AA, Inceboz U. Circulating levels of obestatin and copeptin in obese and nonobese women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2015;189:19–23.

    Article  CAS  Google Scholar 

  201. Widecka J, Ozegowska K, Banaszewska B, Kazienko A, Safranow K, Branecka-Wozniak D, Pawelczyk L, Kurzawa R. Is copeptin a new potential biomarker of insulin resistance in polycystic ovary syndrome? Ginekol Pol. 2019;90(3):115–21.

    Article  Google Scholar 

  202. Gilling-Smith C, Willis DS, Beard RW, et al. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–65.

    CAS  Google Scholar 

  203. Sharif E, Alwakeel M. New markers for the detection of polycystic ovary syndrome. Obstet Gynecol Int J. 2019;10(4):257–68.

    Article  Google Scholar 

  204. Yilmaz SA, Kerimoglu OS, Pekin AT, Incesu F, Dogan NU, Celik C, Unlu A. Metastin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2014;180:56–60.

    Article  CAS  Google Scholar 

  205. Meczekalski B, Katulski K, Podfigurna-Stopa A, Czyzyk A, Genazzani AD. Spontaneous endogenous pulsatile release ofkisspeptin is temporally coupled with luteinizing hormone in healthy women. Fertil Steril. 2016;105:1345–50.

    Article  CAS  Google Scholar 

  206. Clarke H, Dhillo WS, Jayasena CN. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinol Metab (Seoul). 2015;30(2):124–41.

    Article  CAS  Google Scholar 

  207. Varikasuvu SR, Prasad VS, Vamshika VC, Satyanarayana MV, Panga JR. Circulatory metastin/kisspeptin-1 in polycystic ovary syndrome: a systematic review and meta-analysis with diagnostic test accuracy. Reprod Biomed Online. 2019;39(4):685–97.

    Article  CAS  Google Scholar 

  208. Li H, Xu X, Wang X, Liao X, Li L, Yang G, Gao L. Free androgen index and Irisin in polycystic ovary syndrome. J Endocrinol Invest. 2016;39:549–56.

    Article  Google Scholar 

  209. Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Makras P, Perakakis N, Kountouras J, Mantzoros CS. Irisin in metabolic diseases. Endocrine. 2018;59(2):260–74.

    Article  CAS  Google Scholar 

  210. Hoover SE, Gower BA, Cedillo YE, Chandler-Laney PC, Deemer SE, Goss AM. Changes in Ghrelin and Glucagon following a Low Glycemic Load Diet in Women with PCOS. J Clin Endocrinol Metab. 2021;106(5):e2151–61.

    Article  Google Scholar 

  211. Muccioli G, Tschop M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Eur J Pharmacol. 2002;440(203):235–54.

    Article  CAS  Google Scholar 

  212. Ozgen IT, Aydin M, Guven A, Aliyazicıoglu Y. Characteristics of polycystic ovarian syndrome and relationship with ghrelin in adolescents. J Pediatr Adolesc Gynecol. 2010;23(5):285–9.

    Article  CAS  Google Scholar 

  213. Cowan E, Burch KJ, Green BD, et al. Obestatin as a key regulator of metabolism and cardiovascular function with emerging therapeutic potential for diabetes. Br J Pharmacol. 2016;173(14):2165–81.

    Article  CAS  Google Scholar 

  214. Sahay S, Jain M, Dash D, Choubey L, Jain S, Singh TB. Role of plasminogen activator inhibitor type 1 (PAI-1) in PCOS patient. Int J Reprod Contracept Obstet Gynecol. 2017;6:4052–8.

    Article  Google Scholar 

  215. Godtfredsen ACM, Sidelmann JJ, Gram JB, Andersen M, Glintborg D. Fibrin lysability is associated with central obesity and inflammation in women with polycystic ovary syndrome. Acta Obstet Gynecol Scand. 2020;99(8):1078–84.

    Article  CAS  Google Scholar 

  216. Tarkun I, Cantürk Z, Arslan BC, Türemen E, Tarkun P. The plasminogen activator system in young and lean women with polycystic ovary syndrome. Endocr J. 2004;51:467–72.

    Article  CAS  Google Scholar 

  217. Sapone A, de Magistris L, Pietzak M, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55:1443–9.

    Article  CAS  Google Scholar 

  218. Zhang F, Ma T, Cui P, Tamadon A, He S, Huo C, Yierfulati G, Xu X, Hu W, Li X, Shao LR, Guo H, Feng Y, Xu C. Diversity of the Gut Microbiota in Dihydrotestosterone-Induced PCOS Rats and the Pharmacologic Effects of Diane-35, Probiotics, and Berberine. Front Microbiol. 2019;10:175.

    Article  CAS  Google Scholar 

  219. Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernández- Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One 2012;7:e37160.

  220. Lingaiah S, Arffman RK, Morin-Papunen L, Tapanainen JS, Piltonen T. Markers of gastrointestinal permeability and dysbiosis in premenopausal women with PCOS: a case-control study. BMJ Open. 2021;11(7):e045324.

  221. Zhang D, Zhang L, Yue F, Zheng Y, Russell R. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur J Endocrinol. 2015;172:29–36.

    Article  CAS  Google Scholar 

  222. Murri M, Luque-Ramirez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19:268–88.

    Article  CAS  Google Scholar 

  223. Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol. 2018;463:131–41.

    Article  CAS  Google Scholar 

  224. Kalro BN, Loucks TL, Berga SL. Neuromodulation in polycystic ovary syndrome. Obstet Gynecol Clin North Am. 2001;28:35–62.

    Article  CAS  Google Scholar 

  225. Holte J, Bergh T, Gennarelli G, Wide L. The independent effects of polycystic ovary syndrome and obesity on serum concentrations of gonadotrophins and sex steroids in premenopausal women. Clin Endocrinol. 1994;41:473–81.

    Article  CAS  Google Scholar 

  226. La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, Stabile G, Volpe A. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART) Hum Reprod Update. 2009;16:113-130.

  227. Sathyapalan T, Al-Qaissi A, Kilpatrick ES, Dargham SR, Atkin SL. Anti-Müllerian hormone measurement for the diagnosis of polycystic ovary syndrome. Clin Endocrinol. 2018;88:258–62.

    Article  CAS  Google Scholar 

  228. Ahmed N, Batarfi AA, Bajouh OS, Bakhashab S. Serum Anti-Müllerian Hormone in the Diagnosis of Polycystic Ovary Syndrome in Association with Clinical Symptoms. Diagnostics. 2019;9:136.

    Article  CAS  Google Scholar 

  229. Hammond GL. Diverse roles for sex hormone-binding globulin in reproduction. Biol Reprod. 2011;85:431–41.

    Article  CAS  Google Scholar 

  230. Qu X, Donnelly R. Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome. Int J Mol Sci. 2020;21:8191.

    Article  CAS  Google Scholar 

  231. Toulis KA, Goulis DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC, Papadimas I, Panidis D. Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum Reprod Update. 2009;15:297–307.

    Article  CAS  Google Scholar 

  232. Targher G, Rossini M, Lonardo A. Evidence that non-alcoholic fatty liver disease and polycystic ovarysyndrome are associated by necessity rather than chance: A novel hepato-ovarian axis? Endocrine. 2016;51:211–21.

    Article  CAS  Google Scholar 

  233. Wang Y, Xie X, Zhu W. Serum adiponectin and resistin levels in patients with polycystic ovarian syndrome and their clinical implications. J Huazhong Univ Sci Technolog Med Sci. 2010;30:638–42.

    Article  Google Scholar 

  234. Mueller NT, Liu T, Mitchel EB, Yates KP, Suzuki A, Behling C, Lavine JE. Sex Hormone Relations to Histologic Severity of Pediatric Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab. 2020;105:574.

    Article  Google Scholar 

  235. Rizk NM, Sharif E. Leptin as well as Free Leptin Receptor is Associated with Polycystic Ovary Syndrome in Young Women. Int J Endocrinol. 2015;927805.

  236. Papatheodoridi M, Cholongitas E. Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Curr Pharm Des. 2018;24:4574–86.

    Article  CAS  Google Scholar 

  237. Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: Causes, diagnosis, cardio metabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 2019;7:313–24.

    Article  Google Scholar 

  238. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    Article  CAS  Google Scholar 

  239. Du J, Lin X, Wu R, Gao Z, Du Y, Liao Y, Quan S. miR-424 suppresses proliferation and promotes apoptosis of human ovarian granulosa cells by targeting Apelin and APJ expression. Am J Transl Res. 2020;12(7):3660-3673. Erratum in: Am J Transl Res. 2021;13(4):3917-3918.

  240. Gören K, Sağsöz N, Noyan V, et al. Plasma apelin levels in patients with polycystic ovary syndrome. J Turk Ger Gynecol Assoc. 2012;13(1):27–31.

    Google Scholar 

  241. Liu Q, Jiang J, Shi Y, Mo Z, Li M. Apelin/Apelin receptor: A new therapeutic target in Polycystic Ovary Syndrome. Life Sci. 2020;260:118310.

  242. Altinkaya SÖ, Nergiz S, Küçük M, Yüksel H. Apelin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2014;176:168–72.

    Article  CAS  Google Scholar 

  243. Weiping L, Qingfeng C, Shikun M, Xiurong L, Hua Q, Xiaoshu B, Suhua Z, Qifu L. Elevated serum RBP4 is associated with insulin resistance in women with polycystic ovary syndrome. Endocrine. 2006;30:283–7.

    Article  Google Scholar 

  244. Ilhan GA, Yildizhan B, Pekin T. The impact of lipid accumulation product (LAP) and visceral adiposity index (VAI) on clinical, hormonal and metabolic parameters in lean women with polycystic ovary syndrome. Gynecol Endocrinol. 2019;35:233–6.

    Article  Google Scholar 

  245. Sağsak E, Keskin M, Çetinkaya S, Erdeve S, Aycan Z. The Diagnostic Value of Free Androgen Index in Obese Adolescent Females with Idiopathic Hirsutism and Polycystic Ovary Syndrome. J Acad Res Med. 2021;11(1):81–5.

    Article  Google Scholar 

  246. Zou J, Wu D, Liu Y, Tan S. Association of luteinizing hormone/ choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis. Gynecol Endocrinol. 2019;35(1):81–5.

    Article  CAS  Google Scholar 

  247. Bayoumy N, El-Shabrawi M, Younes S, Atwa K. Cyp1a1 gene (6235t<c) polymorphism as a risk factor for polycystic ovarian syndrome among egyptian women. Hum Fertil. 2020;23(2):142–7.

    Article  Google Scholar 

  248. Kahsar-Miller, Conway-Myers BA, Boots LR, Azziz R. Steroidogenic acute regulatory protein (StAR) in the ovaries of healthy women and those with polycystic ovary syndrome. Am. J. Obstet. Gynecol. 2001;185(6):1381-1387.

  249. Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol. 2015;145:213–25.

    Article  CAS  Google Scholar 

  250. Pascal P, Rachel D, Christine CR, Alain D, Delphine DA, André R, Didier D. Serum α-inhibin levels in polycystic ovary syndrome: relationship to the serum androstenedione level. J Clin Endocrinol Metab 1997;82(6):1939–43.

    Google Scholar 

  251. Lerchbaum E, Schwetz V, Rabe T, Giuliani A, Obermayer-Pietsch B. Hyperandrogenemia in polycystic ovary syndrome: exploration of the role of free testosterone and androstenedione in metabolic phenotype. PLoS One. 2014;9(10):e108263.

  252. Antonio L, Pauwels S, Laurent MR, Vanschoubroeck D, Jans I, Billen J, Claessens F, Decallonne B, Diane De Neubourg, Vermeersch P, Vanderschueren D. Free Testosterone Reflects Metabolic as well as Ovarian Disturbances in Subfertile Oligomenorrheic Women. International Journal of Endocrinology. 2018;2018:8.

  253. Wu G, Hu X, Ding J. et al. The effect of glutamine on Dehydroepiandrosterone-induced polycystic ovary syndrome rats. J Ovarian Res. 2020;13:57.

  254. Narayanan P. Androgens in Polycystic Ovarian Syndrome (PCOS) Beyond Testosterone. Crit Care Obst Gyne. 2020;3:6.

    Google Scholar 

  255. Escobar-Morreale HF, Samino S, Insenser M, et al. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC–MS. Clin Chem. 2012;58:999–1009.

    Article  CAS  Google Scholar 

  256. Jakimiuk AJ, Issat T. PCOS and cancer risk. Folia Histochem Cytobiol. 2009;47:S101–5.

    Google Scholar 

  257. De Leo V, la Marca A, Petraglia F. Insulin-lowering agents in the management of polycystic ovary syndrome. Endocr Rev. 2003;24:633–67.

    Article  Google Scholar 

  258. Gugliucci A, Ghitescu L. Is diabetic hypercoagulability an acquired annexinopathy? Glycation of annexin II as a putative mechanism for impaired fibrinolysis in diabetic patients. Med Hypotheses. 2002;59:247–51.

    Article  CAS  Google Scholar 

  259. Eiffert H, Quentin E, Decker J, Hillemeir S, Hufschmidt M, Klingmüller D, Weber MH, Hilschmann N. The primary structure of human free secretory component and the arrangement of disulfide bonds. Hoppe Seylers Z Physiol Chem. 1984;365:1489–95.

    Article  CAS  Google Scholar 

  260. Reaven GM. Role of insulin resistance in the pathophysiology of non-insulin dependent diabetes mellitus. Diabetes Metab Res Rev. 1993;9(Suppl 1):5S-12S.

    Article  Google Scholar 

  261. Zhang R, Barker L, Pinchev D, Marshall J, Rasamoelisolo M, Smith C, Kupchak P, Kireeva I, Ingratta L, Jackowski G. Mining biomarkers in human sera using proteomic tools. Proteomics. 2004;4:244–56.

    Article  CAS  Google Scholar 

  262. Buysschaert M, Dramais AS, Wallemacq PE, Hermans MP. Hyperhomocysteinemia in type 2 diabetes: Relationship to macroangiopathy, nephropathy, and insulin resistance. Diabetes Care. 2000;23:1816–22.

    Article  CAS  Google Scholar 

  263. Heutling D, Schulz H, Nickel I, Kleinstein J, Kaltwasser P, Westphal S, Mittermayer F, Wolzt M, Krzyzanowska K, Randeva H, Schernthaner G, Lehnert H. Asymmetrical dimethylarginine, inflammatory and metabolic parameters in women with polycystic ovary syndrome before and after metformin treatment. J Clin Endocrinol Metab. 2008;93(1):82–90.

    Article  CAS  Google Scholar 

  264. Seleem AK, El Refaeey AA, Shaalan D, Sherbiny Y, Badawy A. Superoxide dismutase in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection. J Assist Reprod Genet. 2014;31(4):499–504.

    Article  Google Scholar 

  265. Dursun P, Demirtaş E, Bayrak A, Yarali H. Decreased serum paraoxonase 1 (PON1) activity: an additional risk factor for atherosclerotic heart disease in patients with PCOS? Hum Reprod. 2006;21(1):104–8.

    Article  CAS  Google Scholar 

  266. Lindon JC, Holmes E, Nicholson JK. Metabolomics: systems biology in pharmaceutical research and development. Curr Opin Mol Ther. 2004;6:265–72.

    CAS  Google Scholar 

  267. Kuehnbaum NL, Britz-McKibbin P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev. 2013;113:2437–68.

    Article  CAS  Google Scholar 

  268. Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril. 2013;99:998–1007.

    Article  CAS  Google Scholar 

  269. Housten SM. Metabolomics: unraveling the chemical individuality of common human diseases. Ann Med. 2009;41:402–7.

    Article  Google Scholar 

  270. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15(7):473–84.

    Article  CAS  Google Scholar 

  271. Barderas MG, Laborde CM, Posada M, de la Cuesta F, Zubiri I, Vivanco F, Alvarez-Llamas G. Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J. Biomed. Biotechnol. 2011:790132.

  272. Guppy JL, Jones DB, Jerry DR, et al. The state of “Omics” research for farmed penaeids: advances in research and impediments to industry utilization. Front Genet. 2018;9:282.

    Article  Google Scholar 

  273. Zhao H, Zhao Y, Li T, Li M, Li J, Li R, Liu P, Yu Y, Qiao J. Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic Biol Med. 2015;86:295–307.

    Article  CAS  Google Scholar 

  274. Murri M, Insenser M, Escobar-Morreale HF. Metabolomics in polycystic ovary syndrome. Clin Chim Acta. 2014;429:181–8.

    Article  CAS  Google Scholar 

  275. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harbor molecular case studies. 2015;1:a000588.

  276. Zhao Y, Fu L, Li R, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153.

    Article  CAS  Google Scholar 

  277. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.

    Article  CAS  Google Scholar 

  278. Lee HJ, Kremer DM, Sajjakulnukit P, Zhang L, Lyssiotis CA. A large-scale analysis of targeted metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics. Metabolomics. 2019;15:103.

    Article  Google Scholar 

  279. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011;40:387–426.

    Article  CAS  Google Scholar 

  280. Zhao X, Xu F, Qi B, Hao S, Li Y, Zou L, Lu C, Xu G, Hou L. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry. J Proteome Res. 2014;13:1101–11.

    Article  CAS  Google Scholar 

  281. Wang W, Wang S, Tan S, Wen M, Qian Y, Zeng X, Guo Y, Yu C. Detection of urine metabolites in polycystic ovary syndrome by UPLC triple-TOF-MS. Clin Chim Acta. 2015;448:39–47.

    Article  CAS  Google Scholar 

  282. Dong F, Deng D, Chen H, Cheng W, Li Q, Luo R, Ding S. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal Bioanal Chem. 2015;407:4683–95.

    Article  CAS  Google Scholar 

  283. Yu Y, Tan P, Zhuang Z. et al. Untargeted metabolomic approach to study the serum metabolites in women with polycystic ovary syndrome. BMC Med Genomics. 2021;14:206.

  284. Xie B, Wang Y, Jones DR, Dey KK, Wang X, Li Y, Cho JH, Shaw TI, Tan H, Peng J. Isotope labeling-assisted evaluation of hydrophilic and hydrophobic liquid chromatograph-mass spectrometry for metabolomics profiling. Anal Chem. 2018;90:8538–45.

    Article  CAS  Google Scholar 

  285. Kanehisa M, Goto S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  Google Scholar 

  286. Croft D, Mundo A, and Haw R et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2013;42(Database issue):D472477.

  287. Segre AV, Consortium D, investigators M, Groop L, Mootha VK, Daly MJ, et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related Shim glycemic traits. PLoS Genet. 2010;6(8).e1001058.

  288. Whigham LD, Butz DE, Dashti H, Tonelli M, Johnson LK, et al. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. Curr Metabolomics. 2014;2(4):269–78.

    Article  Google Scholar 

  289. Zou Y, Zhu FF, Fang CY, Xiong XY, Li HY. Identification of Potential Biomarkers for Urine Metabolomics of Polycystic Ovary Syndrome Based on Gas Chromatography-Mass Spectrometry. Chin Med J. 2018;131(8):945–9.

    Article  CAS  Google Scholar 

  290. Roy Choudhury S, Mishra BP, Khan T, Chattopadhayay R, Lodh I, Datta Ray C, Bose G, Sarkar HS, Srivastava S, Joshi MV, et al. Serum metabolomics of Indian women with polycystic ovary syndrome using 1H-NMR coupled with a pattern recognition approach. Mol Biosyst. 2016;12:3407–16.

    Article  CAS  Google Scholar 

  291. Sun Z, Chang HM, Wang A. et al. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry. Reprod Biol Endocrinol. 2019;17:45.

  292. Sun L, Hu W, Liu Q, et al. Metabolomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J Proteome Res. 2012;11:2937–46.

    Article  CAS  Google Scholar 

  293. Zhang Y, Liu L, Yin T, Yang J, Xiong CL. Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 2017;8:80472–80.

    Article  Google Scholar 

  294. Chen X, Lu T, Wang X, Sun X, Zhang J, Zhou K, Ji X, Sun R, Wang X, Chen M, et al. Metabolic alterations associated with polycystic ovary syndrome: A UPLC Q-Exactive based metabolomic study. Clin Chim Acta. 2020;502:280–6.

    Article  CAS  Google Scholar 

  295. Dhayat NA, Marti N, Kollmann Z, Troendle A, et al., members of the SKIPOGH Study Group. Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites. PLoS One. 2018;13:e0203903.

  296. Szczuko M, Zapałowska-Chwyć M, Drozd A, Maciejewska D, Starczewski A, Stachowska E. Metabolic pathways of oleic and palmitic acid are intensified in PCOS patients with normal androgen levels. Prostaglandins Leukot Essent Fatty Acids. 2017;126:105–11.

    Article  Google Scholar 

  297. Jia C, Xu H, Xu Y, Xu Y, Shi Q. Serum metabolomics analysis of patients with polycystic ovary syndrome by mass spectrometry. Mol Reprod Dev. 2019;86:292–7.

    Article  CAS  Google Scholar 

  298. Fan X, Jiang J, Huang Z, Gong J, Wang Y, Xue W, Deng Y, Wang Y, Zheng T, Sun A, et al. UPLC/Q-TOF-MS based plasma metabolomics and clinical characteristics of polycystic ovarian syndrome. Mol Med Rep. 2019;19:280–92.

    CAS  Google Scholar 

  299. Postle AD. Lipidomics. Curr Opin Clin Nutr Metab Care. 2012;15(2):127–33.

    CAS  Google Scholar 

  300. Tang L, Yuan L, Yang G, Wang F, Fu M, Chen M, Liu D. Changes in whole metabolites after exenatide treatment in overweight/obese polycystic ovary syndrome patients. Clin Endocrinol. 2019;91:508–16.

    Article  CAS  Google Scholar 

  301. Shafiee MN, Ortori CA, Barrett DA, Mongan NP, Abu J, Atiomo W. Lipidomic Biomarkers in Polycystic Ovary Syndrome and Endometrial Cancer. Int J Mol Sci. 2020;21(13):4753.

    Article  CAS  Google Scholar 

  302. Landin K, Lonnroth P, Krotkiewski M, Holm G, Smith U. Increased insulin resistance and fat cell lipolysis in obese but not lean women with a high waist/hip ratio. Eur J Clin Invest. 1990;20:530–5.

    Article  CAS  Google Scholar 

  303. Basu A, Basu R, Shah P, Vella A, Rizza RA, Jensen MD. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am J Physiol Endocrinol Metab. 2001;280:E1000–6.

    Article  CAS  Google Scholar 

  304. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3(3):211–21.

    Article  CAS  Google Scholar 

  305. Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–55.

    Article  CAS  Google Scholar 

  306. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.

    Article  CAS  Google Scholar 

  307. Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The relationship between branched-chain amino acid related metabolomic signature and insulin resistance: a systematic review. J Diabetes Res. 2016;2794591:12.

    Google Scholar 

  308. Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, DeJesus VR, Vockley J, Arslanian SA. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care. 2012;35:605-11.

  309. Homson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol 2012;77:343–50.

    Article  Google Scholar 

  310. Yildizhan R, Kurdoglu M, Adali E, Kolusari A, Yildizhan B, Sahin HG, Kamaci M. Serum 25-hydroxy vitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet 2009;280:559–63.

    Article  Google Scholar 

  311. Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: What’s new? Adv Clin Exp Med. 2017;26:359–67.

    Article  Google Scholar 

  312. Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110:364–79.

    Article  Google Scholar 

  313. Marsh KA, Steinbeck KS, Atkinson FS, Petocz P, Brand-Miller JC. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am J Clin Nutr. 2010;92:83–92.

    Article  CAS  Google Scholar 

  314. Goss AM, Chandler-Laney PC, Ovalle F, et al. Effects of a eucaloric reduced-carbohydrate diet on body composition and fat distribution in women with PCOS. Metabolism. 2014;63(10):1257–64.

    Article  CAS  Google Scholar 

  315. Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2017;131:124–31.

    Article  CAS  Google Scholar 

  316. Frary JM, Bjerre KP, Glintborg D, Ravn P. The effect of dietary carbohydrates in women with polycystic ovary syndrome: a systematic review. Minerva Endocrinol. 2016;41:57–69.

    Google Scholar 

  317. Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2017;11(11):CD003053.

  318. Anithasri A, Ananthanarayanan PH, Veena P. A Study on Omentin-1 and Prostate Specific Antigen in Women on Treatment for Polycystic Ovary Syndrome. Indian J Clin Biochem. 2019;34:108–14.

    CAS  Google Scholar 

Download references

Acknowledgments

S.R is grateful for the financial support of the Indian Council of Medical Research (ICMR) project (BMI/11(75)/2020) for carrying out research on PCOS. The authors are extremely thankful to Dr. Manisha Goel, Professor, Department of Biophysics, University of Delhi, South Campus, New Delhi, for giving us this opportunity.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.R.; writing, S.R., and P.C.; review and editing, S.R. and P.C.; both the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shikha Rani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Chandna, P. Multiomics Analysis–Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod. Sci. 30, 1–27 (2023). https://doi.org/10.1007/s43032-022-00863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00863-9

Keywords

Navigation