Skip to main content
Log in

Loss of Selenoprotein Iodothyronine Deiodinase 3 Expression Correlates with Progression of Complete Hydatidiform Mole to Gestational Trophoblastic Neoplasia

  • Gynecologic Oncology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

To investigate if differences in imprinting at tropho-microRNA (miRNA) genomic clusters can distinguish between pre-gestational trophoblastic neoplasia cases (pre-GTN) and benign complete hydatidiform mole (CHM) cases at the time of initial uterine evacuation. miRNA sequencing was performed on frozen tissue from 39 CHM cases including 9 GTN cases. DIO3, DLK1, RTL1, and MEG 3 mRNA levels were assessed by qRT-PCR. Protein abundance was assessed by Western blot for DIO3, DLK1, and RTL1. qRT-PCR and Western blot were performed for selenoproteins and markers of oxidative stress. Immunohistochemistry (IHC) was performed for DIO3 on an independent validation set of clinical samples (n = 42) and compared to normal placenta controls across gestational ages. Relative expression of the 14q32 miRNA cluster was lower in pre-GTN cases. There were no differences in protein abundance of DLK1 or RTL1. Notably, there was lower protein expression of DIO3 in pre-GTN cases (5-fold, p < 0.03). There were no differences in mRNA levels of DIO3, DLK1, RTL1 or MEG 3. mRNA levels were higher in all CHM cases compared to normal placenta. IHC showed syncytiotrophoblast-specific DIO3 immunostaining in benign CHM cases and normal placenta, while pre-GTN cases of CHM lacked DIO3 expression. We describe two new biomarkers of pre-GTN CHM cases: decreased 14q32 miRNA expression and loss of DIO3 expression by IHC. Differences in imprinting between benign CHM and pre-GTN cases may provide insight into the fundamental development of CHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010;376:717–29.

    Article  PubMed  Google Scholar 

  2. Sebire NJ, Foskett M, Short D, Savage P, Stewart W, Thomson M, et al. Shortened duration of human chorionic gonadotrophin surveillance following complete or partial hydatidiform mole: evidence for revised protocol of a UK regional trophoblastic disease unit. BJOG. 2007;114:760–2.

    Article  CAS  PubMed  Google Scholar 

  3. Lurain JR, Brewer JI, Torok EE, Halpern B. Natural history of hydatidiform mole after primary evacuation. Am J Obstet Gynecol. 1983;145:591–5.

    Article  CAS  PubMed  Google Scholar 

  4. Curry SL, Hammond CB, Tyrey L, Creasman WT, Parker RT. Hydatidiform mole: diagnosis, management, and long-term followup of 347 patients. Obstet Gynecol. 1975;45:1–8.

    CAS  PubMed  Google Scholar 

  5. Albright BB, Shorter JM, Mastroyannis SA, Ko EM, Schreiber CA, Sonalkar S. Gestational trophoblastic neoplasia after human chorionic gonadotropin normalization following molar pregnancy: a systematic review and meta-analysis. Obstet Gynecol. 2020;135:12–23.

    Article  PubMed  Google Scholar 

  6. Berkowitz RS, Goldstein DP. Current management of gestational trophoblastic diseases. Gynecol Oncol. 2009;112:654–62.

    Article  CAS  PubMed  Google Scholar 

  7. Berkowitz RS, Goldstein DP. Clinical practice. Molar pregnancy. N Engl J Med. 2009;360:1639–45.

    Article  CAS  PubMed  Google Scholar 

  8. Morrow CP. Postmolar trophoblastic disease: diagnosis, management, and prognosis. Clin Obstet Gynecol. 1984;27:211–20.

    Article  CAS  PubMed  Google Scholar 

  9. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.

    Article  CAS  PubMed  Google Scholar 

  10. Fisher RA, Newlands ES. Gestational trophoblastic disease. Molecular and genetic studies. J Reprod Med. 1998;43:87–97.

    CAS  PubMed  Google Scholar 

  11. Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.

    Article  CAS  PubMed  Google Scholar 

  12. Baasanjav B, Usui H, Kihara M, Kaku H, Nakada E, Tate S, et al. The risk of post-molar gestational trophoblastic neoplasia is higher in heterozygous than in homozygous complete hydatidiform moles. Hum Reprod. 2010;25:1183–91.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng X-Z, Qin X-Y, Chen S-W, Wang P, Zhan Y, Zhong P-P, et al. Heterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease. Mod Pathol. 2020;33:1979–88.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Delgado M, Martin-Trujillo A, Tayama C, Vidal E, Esteller M, Iglesias-Platas I, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal-effect mutations reveals widespread placenta-specific imprinting. PLoS Genet. 2015;11:e1005644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kato N, Kamataki A, Kurotaki H. Methylation profiles of imprinted genes are distinct between mature ovarian teratoma, complete hydatidiform mole, and extragonadal mature teratoma. Mod Pathol. 2021;34:502–7.

    Article  CAS  PubMed  Google Scholar 

  16. Sebire NJ, Seckl MJ. Immunohistochemical staining for diagnosis and prognostic assessment of hydatidiform moles: current evidence and future directions. J Reprod Med. 2010;55:236–46.

    PubMed  Google Scholar 

  17. Yang X, Zhang Z, Jia C, Li J, Yin L, Jiang S. The relationship between expression of c-ras, c-erbB-2, nm23, and p53 gene products and development of trophoblastic tumor and their predictive significance for the malignant transformation of complete hydatidiform mole. Gynecol Oncol. 2002;85:438–44.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J-R, Cheng W-W, Wang Y-X, Cai M, Wu W-B, Zhang H-J. Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis. 2018;9:94. https://doi.org/10.1038/s41419-017-0108-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin LH, Maestá I, St Laurent JD, Hasselblatt KT, Horowitz NS, Goldstein DP, et al. Distinct microRNA profiles for complete hydatidiform moles at risk of malignant progression. Am J Obstet Gynecol. 2020;224:372.e1–372.e30. https://doi.org/10.1016/j.ajog.2020.09.048.

    Article  CAS  Google Scholar 

  20. Sadovsky Y, Mouillet J-F, Ouyang Y, Bayer A, Coyne CB. The function of TrophomiRs and other microRNAs in the human placenta. Cold Spring Harb Perspect Med. 2015;5:a023036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ouyang Y, Mouillet J-F, Coyne CB, Sadovsky Y. Review: placenta-specific microRNAs in exosomes - good things come in nano-packages. Placenta. 2014;35(Suppl):S69–73.

    Article  CAS  PubMed  Google Scholar 

  22. Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B, et al. MicroRNA expression profiles of trophoblastic cells. Placenta. 2012;33:725–34.

    Article  CAS  PubMed  Google Scholar 

  23. Nadal E, Zhong J, Lin J, Reddy RM, Ramnath N, Orringer MB, et al. A microRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin Cancer Res. 2014;20:3107–17.

    Article  CAS  PubMed  Google Scholar 

  24. Geraldo MV, Nakaya HI, Kimura ET. Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget. 2017;8:9597–607.

    Article  PubMed  Google Scholar 

  25. Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA, et al. Am J Obstet Gynecol. 2011;204:178.e12.

    Article  CAS  Google Scholar 

  26. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19:3566–82.

    Article  CAS  PubMed  Google Scholar 

  27. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97:51–61.

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  29. Royo H, Cavaillé J. Non-coding RNAs in imprinted gene clusters. Biol Cell. 2008;100:149–66. https://doi.org/10.1042/bc20070126.

    Article  CAS  PubMed  Google Scholar 

  30. Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, et al. The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci. 2013;70:795–814.

    Article  CAS  PubMed  Google Scholar 

  31. Mousa R, Dardashti RN, Metanis N. Selenium and selenocysteine in protein chemistry. Angew Chem Int Ed. 2017;56:15818–27. https://doi.org/10.1002/anie.201706876.

    Article  CAS  Google Scholar 

  32. Latrèche L, Jean-Jean O, Driscoll DM, Chavatte L. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine. Nucleic Acids Res. 2009;37:5868–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Morreale de Escobar G, Calvo R, Obregon MJ, Escobar del Rey F. Homeostasis of brain T3 in rat fetuses and their mothers: effects of thyroid status and iodine deficiency. Acta Med Austriaca. 1992;19(Suppl 1):110–6.

    PubMed  Google Scholar 

  34. Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 2000;19:306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kagami M, O’Sullivan MJ, Green AJ, Watabe Y, Arisaka O, Masawa N, et al. The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet. 2010;6:e1000992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sanli I, Lalevée S, Cammisa M, Perrin A, Rage F, Llères D, et al. Meg3 non-coding RNA expression controls imprinting by preventing transcriptional upregulation in cis. Cell Rep. 2018;23:337–48.

    Article  CAS  PubMed  Google Scholar 

  37. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38–89.

    Article  CAS  PubMed  Google Scholar 

  38. Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci. 2008;65:570–90.

    Article  CAS  PubMed  Google Scholar 

  39. Koopdonk-Kool JM, de Vijlder JJ, Veenboer GJ, Ris-Stalpers C, Kok JH, Vulsma T, et al. Type II and type III deiodinase activity in human placenta as a function of gestational age. J Clin Endocrinol Metab. 1996;81:2154–8.

    CAS  PubMed  Google Scholar 

  40. Hernandez A, St Germain DL. Activity and response to serum of the mammalian thyroid hormone deiodinase 3 gene promoter: identification of a conserved enhancer. Mol Cell Endocrinol. 2003;206:23–32.

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest. 2006;116:476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Düğeroğlu H, Özgenoğlu M. Thyroid function among women with gestational trophoblastic diseases. A cross-sectional study. Sao Paulo Med J. 2019;137:278–83.

    Article  PubMed  Google Scholar 

  43. Nisula BC, Taliadouros GS. Thyroid function in gestational trophoblastic neoplasia: evidence that the thyrotropic activity of chorionic gonadotropin mediates the thyrotoxicosis of choriocarcinoma. Am J Obstet Gynecol. 1980;138:77–85.

    Article  CAS  PubMed  Google Scholar 

  44. Wolfberg AJ, Berkowitz RS, Goldstein DP, Feltmate C, Lieberman E. Postevacuation hCG levels and risk of gestational trophoblastic neoplasia in women with complete molar pregnancy. Obstet Gynecol. 2005;106:548–52.

    Article  CAS  PubMed  Google Scholar 

  45. Dudek KM, Suter L, Darras VM, Marczylo EL, Gant TW. Decreased translation of Dio3 mRNA is associated with drug-induced hepatotoxicity. Biochem J. 2013;453:71–82.

    Article  CAS  PubMed  Google Scholar 

  46. Hofstee P, Bartho LA, McKeating DR, Radenkovic F, McEnroe G, Fisher JJ, et al. Maternal selenium deficiency during pregnancy in mice increases thyroid hormone concentrations, alters placental function and reduces fetal growth. J Physiol. 2019;597:5597–617.

    Article  CAS  PubMed  Google Scholar 

  47. Fu J, Fujisawa H, Follman B, Liao X-H, Dumitrescu AM. Thyroid hormone metabolism defects in a mouse model of SBP2 deficiency. Endocrinology. 2017;158:4317–30. https://doi.org/10.1210/en.2017-00618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harma M, Harma M, Erel O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med Wkly. 2003;133:563–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support of the Donald P. Goldstein, MD Trophoblastic Tumor Registry Endowment, the Dyett Family Trophoblastic Disease Research and Registry Endowment, and the International Research Networks (IRN) under Sao Paulo State University- UNESP’s CAPES-PrInt PROJECT.

Funding

This study was completed with the support of a Brigham and Women’s Hospital Expanding the Boundaries grant. Funding for tissue transport and sample maintenance for the International Trophoblastic Disease Biobank was provided by both the Donald P. Goldstein, MD Trophoblastic Tumor Registry Endowment and the Dyett Family Trophoblastic Disease Research and Registry Endowment. Funding for processing and storage of fresh tissue samples from CHM was provided by the São Paulo Research Foundation-FAPESP (finance code 2020/08830-6) and the Brazil’s Coordination for the Improvement of Higher Educacional Personnel (CAPES) helped to maintain the International Research Network (IRN) under Sao Paulo State University- UNESP’s CAPES-PrInt PROJECT (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- CAPES; finance code 001 [I.M.]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica D. St. Laurent or Kevin M. Elias.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 58 kb)

ESM 2

(PDF 45 kb)

ESM 3

(PDF 103 kb)

ESM 4

(PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St. Laurent, J.D., Lin, L.H., Owen, D.M. et al. Loss of Selenoprotein Iodothyronine Deiodinase 3 Expression Correlates with Progression of Complete Hydatidiform Mole to Gestational Trophoblastic Neoplasia. Reprod. Sci. 28, 3200–3211 (2021). https://doi.org/10.1007/s43032-021-00634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00634-y

Keywords

Navigation