Skip to main content
Log in

Organoids as Novel Models for Embryo Implantation Study

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In the last decade, organoids have become emerging novel models for biomedical research. Organoids are small, self-organized three-dimensional (3D) tissue cultures derived from stem cells that mimic certain tissues or organs. In reproductive medicine, researchers have generated numerous organoids including blastoid (blastocyst organoid), endometrial organoid, and trophoblast organoid. These organdies provide useful models for studying the embryo implantation mechanism through observation of cell differentiation, gene expression, and epigenetic profiles at the implantation stage. As in vitro tissue models, organoids could be coupled with many other frontier technologies such as gene editing and genomic sequencing. However, the main drawback of organoids is that they do not fully mimic their counterparts in vivo tissues. Furthermore, there is a consensus of research ethics on organoids that may limit the types of studies that scientists perform with. Nevertheless, all discoveries and efforts surrounding organoids still greatly benefit therapy development for reproductive clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9(12):e1001356. https://doi.org/10.1371/journal.pmed.1001356.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67. https://doi.org/10.1038/nm.3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Reports. 2018;11(2):537–51. https://doi.org/10.1016/j.stemcr.2018.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature. 2018;564(7735):263–7. https://doi.org/10.1038/s41586-018-0753-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivie J, et al. Blastocyst-like structures generated solely from stem cells. Nature. 2018;557(7703):106–11. https://doi.org/10.1038/s41586-018-0051-0.

    Article  CAS  PubMed  Google Scholar 

  6. Sozen B, Cox AL, De Jonghe J, Bao M, Hollfelder F, Glover DM, et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev Cell. 2019;51(6):698–712 e8. https://doi.org/10.1016/j.devcel.2019.11.014.

    Article  CAS  PubMed  Google Scholar 

  7. Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21(8):1041–51. https://doi.org/10.1038/s41556-019-0360-z.

    Article  CAS  PubMed  Google Scholar 

  8. Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE. Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci U S A. 2019;116(46):23132–42. https://doi.org/10.1073/pnas.1915389116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ashok A, Choudhury D, Fang Y, Hunziker W. Towards manufacturing of human organoids. Biotechnol Adv. 2020;39:107460. https://doi.org/10.1016/j.biotechadv.2019.107460.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson HV. A new method by which sponges may be artificially reared. Science. 1907;25(649):912–5. https://doi.org/10.1126/science.25.649.912.

    Article  CAS  PubMed  Google Scholar 

  11. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989. https://doi.org/10.1038/ncomms9989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38(6):590–600. https://doi.org/10.1016/j.devcel.2016.08.014.

    Article  CAS  PubMed  Google Scholar 

  13. Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. 2017;144(10):1775–86. https://doi.org/10.1242/dev.148478.

    Article  CAS  PubMed  Google Scholar 

  14. Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19(5):568–77. https://doi.org/10.1038/ncb3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akbari S, Sevinc GG, Ersoy N, Basak O, Kaplan K, Sevinc K, et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling. Stem Cell Reports. 2019;13(4):627–41. https://doi.org/10.1016/j.stemcr.2019.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee J, Bscke R, Tang PC, Hartman BH, Heller S, Koehler KR. Hair follicle development in mouse pluripotent stem cell-derived skin organoids. Cell Rep. 2018;22(1):242–54. https://doi.org/10.1016/j.celrep.2017.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukui Y, Hirota Y, Matsuo M, Gebril M, Akaeda S, Hiraoka T, et al. Uterine receptivity, embryo attachment, and embryo invasion: multistep processes in embryo implantation. Reprod Med Biol. 2019;18(3):234–40. https://doi.org/10.1002/rmb2.12280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Melford SE, Taylor AH, Konje JC. Of mice and (wo)men: factors influencing successful implantation including endocannabinoids. Hum Reprod Update. 2014;20(3):415–28. https://doi.org/10.1093/humupd/dmt060.

    Article  PubMed  Google Scholar 

  19. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  20. Kojima J, Fukuda A, Taira H, Kawasaki T, Ito H, Kuji N, et al. Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Lab Investig. 2017;97(10):1188–200. https://doi.org/10.1038/labinvest.2016.159.

    Article  CAS  PubMed  Google Scholar 

  21. Renaud SJ. Strategies for investigating hemochorial placentation. Reprod Dev Toxicol. 2017:1259–73. https://doi.org/10.1016/B978-0-12-804239-7.00066-4.

  22. Oda M, Tanaka S, Yamazaki Y, Ohta H, Iwatani M, Suzuki M, et al. Establishment of trophoblast stem cell lines from somatic cell nuclear-transferred embryos. Proc Natl Acad Sci U S A. 2009;106(38):16293–7. https://doi.org/10.1073/pnas.0908009106.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee CQ, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, et al. What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Reports. 2016;6(2):257–72. https://doi.org/10.1016/j.stemcr.2016.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, Whiteley K, et al. Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol. 2009;5:279. https://doi.org/10.1038/msb.2009.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wildman DE. Review: Toward an integrated evolutionary understanding of the mammalian placenta. Placenta. 2011;32(Suppl 2):S142–5. https://doi.org/10.1016/j.placenta.2011.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hou Z, Romero R, Uddin M, Than NG, Wildman DE. Adaptive history of single copy genes highly expressed in the term human placenta. Genomics. 2009;93(1):33–41. https://doi.org/10.1016/j.ygeno.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  27. Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–52. https://doi.org/10.1146/annurev-cellbio-100814-125620.

    Article  CAS  PubMed  Google Scholar 

  28. Aplin JD, Ruane PT. Embryo-epithelium interactions during implantation at a glance. J Cell Sci. 2017;130(1):15–22. https://doi.org/10.1242/jcs.175943.

    Article  CAS  PubMed  Google Scholar 

  29. James JL, Carter AM, Chamley LW. Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta. 2012;33(5):327–34. https://doi.org/10.1016/j.placenta.2012.01.020.

    Article  CAS  PubMed  Google Scholar 

  30. Enders AC, Schlafke S. Cytological aspects of trophoblast-uterine interaction in early implantation. Am J Anat. 1969;125(1):1–29. https://doi.org/10.1002/aja.1001250102.

    Article  CAS  PubMed  Google Scholar 

  31. Pollard RM, Finn CA. Influence of the trophoblast upon differentiation of the uterine epithelium during implantation in the mouse. J Endocrinol. 1974;62(3):669–74. https://doi.org/10.1677/joe.0.0620669.

    Article  CAS  PubMed  Google Scholar 

  32. Li R, Zhong C, Yu Y, Liu H, Sakurai M, Yu L, et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell. 2019;179(3):687–702 e18. https://doi.org/10.1016/j.cell.2019.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiang L, Yin Y, Zheng Y, Ma Y, Li Y, Zhao Z, et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature. 2019;577:537–42. https://doi.org/10.1038/s41586-019-1875-y.

    Article  CAS  PubMed  Google Scholar 

  34. Christodoulou N, Weberling A, Strathdee D, Anderson KI, Timpson P, Zernicka-Goetz M. Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nat Commun. 2019;10(1):3557. https://doi.org/10.1038/s41467-019-11482-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takata N, Sakakura E, Kasukawa T, Sakuma T, Yamamoto T, Sasai Y. Establishment of functional genomics pipeline in mouse epiblast-like tissue by combining transcriptomic analysis and gene knockdown/knockin/knockout, using RNA interference and CRISPR/Cas9. Hum Gene Ther. 2016;27(6):436–50. https://doi.org/10.1089/hum.2015.148.

    Article  CAS  PubMed  Google Scholar 

  36. Haider S, Meinhardt G, Saleh L, Fiala C, Pollheimer J, Knofler M. Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc Natl Acad Sci U S A. 2016;113(48):E7710–E9. https://doi.org/10.1073/pnas.1612335113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):50–63 e6. https://doi.org/10.1016/j.stem.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  38. McConkey CA, Delorme-Axford E, Nickerson CA, Kim KS, Sadovsky Y, Boyle JP, et al. A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance. Sci Adv. 2016;2(3):e1501462. https://doi.org/10.1126/sciadv.1501462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Novakovic B, Saffery R. The ever growing complexity of placental epigenetics - role in adverse pregnancy outcomes and fetal programming. Placenta. 2012;33(12):959–70. https://doi.org/10.1016/j.placenta.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  40. Cotechini T, Komisarenko M, Sperou A, Macdonald-Goodfellow S, Adams MA, Graham CH. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med. 2014;211(1):165–79. https://doi.org/10.1084/jem.20130295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Renaud SJ, Cotechini T, Quirt JS, Macdonald-Goodfellow SK, Othman M, Graham CH. Spontaneous pregnancy loss mediated by abnormal maternal inflammation in rats is linked to deficient uteroplacental perfusion. J Immunol. 2011;186(3):1799–808. https://doi.org/10.4049/jimmunol.1002679.

    Article  CAS  PubMed  Google Scholar 

  42. Hibaoui Y, Feki A. Organoid models of human endometrial development and disease. Front Cell Dev Biol. 2020;8:84. https://doi.org/10.3389/fcell.2020.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boers SN, Bredenoord AL. Consent for governance in the ethical use of organoids. Nat Cell Biol. 2018;20(6):642–5. https://doi.org/10.1038/s41556-018-0112-5.

    Article  CAS  PubMed  Google Scholar 

  44. Hyun I, Munsie M, Pera MF, Rivron NC, Rossant J. Toward guidelines for research on human embryo models formed from stem cells. Stem Cell Reports. 2020;14(2):169–74. https://doi.org/10.1016/j.stemcr.2019.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, et al. Biospecimen reporting for improved study quality (BRISQ). Cancer Cytopathol. 2011;119(2):92–101. https://doi.org/10.1002/cncy.20147.

    Article  PubMed  Google Scholar 

  47. El-Shamayleh Y, Horwitz GD. Primate optogenetics: progress and prognosis. Proc Natl Acad Sci U S A. 2019;116:26195–203. https://doi.org/10.1073/pnas.1902284116.

    Article  CAS  PubMed Central  Google Scholar 

  48. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653–8. https://doi.org/10.1016/j.stem.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  49. Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human brain organoids on a chip reveal the physics of folding. Nat Phys. 2018;14(5):515–22. https://doi.org/10.1038/s41567-018-0046-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54. https://doi.org/10.1038/ncb3312.

    Article  CAS  PubMed  Google Scholar 

  51. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 2015;16(5):556–65. https://doi.org/10.1016/j.stem.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  52. Worsdorfer P, Dalda N, Kern A, Kruger S, Wagner N, Kwok CK, et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep. 2019;9(1):15663. https://doi.org/10.1038/s41598-019-52204-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019;16(3):255–62. https://doi.org/10.1038/s41592-019-0325-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11(8):847–54. https://doi.org/10.1038/nmeth.3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol. 2017;35(7):659–66. https://doi.org/10.1038/nbt.3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knight GT, Lundin BF, Iyer N, Ashton LM, Sethares WA, Willett RM, et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. Elife. 2018;7. https://doi.org/10.7554/eLife.37549.

  57. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238–54. https://doi.org/10.1016/j.cell.2016.04.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li M, Izpisua Belmonte JC. Organoids - preclinical models of human disease. N Engl J Med. 2019;380(6):569–79. https://doi.org/10.1056/NEJMra1806175.

    Article  PubMed  Google Scholar 

  59. Niu Y, Sun N, Li C, Lei Y, Huang Z, Wu J, et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science. 2019;366(6467). https://doi.org/10.1126/science.aaw5754.

Download references

Acknowledgements

Many thanks to Alyssa Meng of UCSB and Ryan Lee of UCLA, for their proof reading of the draft.

Funding

This work was supported by “23456” Talent Project of Henan Provincial People’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubao Wei or Cuilian Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhang, C., Fan, G. et al. Organoids as Novel Models for Embryo Implantation Study. Reprod. Sci. 28, 1637–1643 (2021). https://doi.org/10.1007/s43032-021-00501-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00501-w

Keywords

Navigation