Toxicology BMiR. Biologic markers of human male reproductive health and physiologic damage. 1989.
Brown RL. Rate of transport of spermia in human uterus and tubes. Am J Obstet Gynecol. 1944;47(3):407–11. https://doi.org/10.1016/S0002-9378(15)30756-0.
Article
Google Scholar
World Health Organization. WHO laboratory manual for the Examination and processing of human semen. 2010.
Shlomi Barak HWGB. Clinical management of male infertility. Adult and Pediatric: Endocrinology; 2016.
Google Scholar
Nayak J, Jena SR, Samanta L. Chapter 4.3 - Oxidative stress and sperm dysfunction: an insight into dynamics of semen proteome. In: Henkel R, Samanta L, Agarwal A, editors. Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction. Academic Press; 2019. p. 261-275.
Gaffney EA, Gadêlha H, Smith DJ, Blake JR, Kirkman-Brown JC. Mammalian sperm motility: observation and theory. Annu Rev Fluid Mech. 2011;43(1):501–28. https://doi.org/10.1146/annurev-fluid-121108-145442.
Article
Google Scholar
Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev. 2006;18(1-2):25–38. https://doi.org/10.1071/rd05120.
PubMed
Article
Google Scholar
Freitas MJ, Vijayaraghavan S, Fardilha M. Signaling mechanisms in mammalian sperm motility†. Biol Reprod. 2016;96(1):2–12. https://doi.org/10.1095/biolreprod.116.144337.
Article
Google Scholar
Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37. https://doi.org/10.1186/s12958-015-0032-1.
PubMed
PubMed Central
Article
Google Scholar
Agarwal A, Sharma R, Harlev A, Esteves S. Effect of varicocele on semen characteristics according to the new 2010 World Health Organization criteria: a systematic review and meta-analysis. Asian J Andrology. 2016;18(2):163–70. https://doi.org/10.4103/1008-682x.172638.
CAS
Article
Google Scholar
Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94(4):1531–4. https://doi.org/10.1016/j.fertnstert.2009.12.039.
CAS
PubMed
Article
Google Scholar
Zargooshi J. Sperm count and sperm motility in incidental high-grade varicocele. Fertil Steril. 2007;88(5):1470–3. https://doi.org/10.1016/j.fertnstert.2007.01.016.
PubMed
Article
Google Scholar
Blumer CG, Fariello RM, Restelli AE, Spaine DM, Bertolla RP, Cedenho AP. Sperm nuclear DNA fragmentation and mitochondrial activity in men with varicocele. Fertil Steril. 2008;90(5):1716–22. https://doi.org/10.1016/j.fertnstert.2007.09.007.
CAS
PubMed
Article
Google Scholar
Samanta L, Agarwal A, Swain N, Sharma R, Gopalan B, Esteves SC, et al. Proteomic signatures of sperm mitochondria in varicocele: clinical use as biomarkers of varicocele associated infertility. J Urol. 2018;200(2):414–22.
CAS
PubMed
Article
Google Scholar
Buffone MG, Brugo-Olmedo S, Calamera JC, Verstraeten SV, Urrutia F, Grippo L, et al. Decreased protein tyrosine phosphorylation and membrane fluidity in spermatozoa from infertile men with varicocele. Mol Reprod Dev. 2006;73(12):1591–9. https://doi.org/10.1002/mrd.20611.
CAS
PubMed
Article
Google Scholar
Ariagno J, Mendeluk G, Furlan M, Sardi M, Chenlo P, et al. Computer-aided sperm analysis: a useful tool to evaluate patient’s response to varicocelectomy. Asian J Andrology. 2017;19(4):449–52. https://doi.org/10.4103/1008-682x.173441.
CAS
Article
Google Scholar
Kantartzi PD, Goulis C, Goulis GD, Papadimas I. Male infertility and varicocele: myths and reality. Hippokratia. 2007;11(3):99–104.
CAS
PubMed
PubMed Central
Google Scholar
Chu DI, Zderic SA, Shukla AR, Srinivasan AK, Tasian GE, Weiss DA et al. Does varicocelectomy improve semen analysis outcomes in adolescents without testicular asymmetry? J Pediatr Urol. 2017;13(1):76.e1-.e5. doi:https://doi.org/10.1016/j.jpurol.2016.09.010.
Shabana W, Teleb M, Dawod T, Elsayed E, Desoky E, Shahin A, et al. Predictors of improvement in semen parameters after varicocelectomy for male subfertility: a prospective study. Can Urol Assoc J. 2015;9(9-10):E579–82. https://doi.org/10.5489/cuaj.2808.
PubMed
PubMed Central
Article
Google Scholar
Garg H, Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J Androl. 2016;18(2):222–8. https://doi.org/10.4103/1008-682x.171657.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang Y, Chen F, Liang M, Chen S, Zhu Y, Zou Z, et al. Grape seed proanthocyanidin extract attenuates varicocele-induced testicular oxidative injury in rats by activating the Nrf2-antioxidant system. Mol Med Rep. 2018;17(1):1799–806. https://doi.org/10.3892/mmr.2017.8020.
CAS
PubMed
Article
Google Scholar
Chemes HE, Rawe VY. The making of abnormal spermatozoa: cellular and molecular mechanisms underlying pathological spermiogenesis. Cell Tissue Res. 2010;341(3):349–57. https://doi.org/10.1007/s00441-010-1007-3.
PubMed
Article
Google Scholar
Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Gen Med. 2009;11(7):473–87. https://doi.org/10.1097/GIM.0b013e3181a53562.
Article
Google Scholar
Gupta S, Handa KK, Kasliwal RR, Bajpai P. A case of Kartagener’s syndrome: Importance of early diagnosis and treatment. Indian J Hum Genet. 2012;18(2):263–7. https://doi.org/10.4103/0971-6866.100787.
PubMed
PubMed Central
Article
Google Scholar
Mirra V, Werner C, Santamaria F. Primary ciliary dyskinesia: an update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front Pediatr. 2017;5(135). https://doi.org/10.3389/fped.2017.00135.
Chemes HE, Rawe VY. Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum Reprod Update. 2003;9(5):405–28. https://doi.org/10.1093/humupd/dmg034.
PubMed
Article
Google Scholar
Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril. 2011;95(7):2315–9. https://doi.org/10.1016/j.fertnstert.2011.03.059.
CAS
PubMed
Article
Google Scholar
Baklouti-Gargouri S, Ghorbel M, Mahmoud AB, Mkaouar-Rebai E, Cherif M, Chakroun N, et al. Identification of a novel m. 9588G> a missense mutation in the mitochondrial COIII gene in asthenozoospermic Tunisian infertile men. J Assist Reprod Genet. 2014;31(5):595–600.
PubMed
PubMed Central
Article
Google Scholar
Kao S-H, Chao H-T, Liu H-W, Liao T-L, Wei Y-H. Sperm mitochondrial DNA depletion in men with asthenospermia. Fertil Steril. 2004;82(1):66–73. https://doi.org/10.1016/j.fertnstert.2003.11.056.
CAS
PubMed
Article
Google Scholar
Ruiz-Pesini E, Lapeña A-C, Díez-Sánchez C, Pérez-Martos A, Montoya J, Alvarez E, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet. 2000;67(3):682–96. https://doi.org/10.1086/303040.
CAS
PubMed
PubMed Central
Article
Google Scholar
Selvi Rani D, Vanniarajan A, Gupta NJ, Chakravarty B, Singh L, Thangaraj K. A novel missense mutation C11994T in the mitochondrial ND4 gene as a cause of low sperm motility in the Indian subcontinent. Fertil Steril. 2006;86(6):1783–5. https://doi.org/10.1016/j.fertnstert.2006.04.044.
CAS
PubMed
Article
Google Scholar
Cui D, Han G, Shang Y, Liu C, Xia L, Li L, et al. Antisperm antibodies in infertile men and their effect on semen parameters: a systematic review and meta-analysis. Clin Chim Acta. 2015;444:29–36.
CAS
PubMed
Article
Google Scholar
McLachlan RI. Basis, diagnosis and treatment of immunological infertility in men. J Reprod Immunol. 2002;57(1):35–45. https://doi.org/10.1016/S0165-0378(02)00014-1.
CAS
PubMed
Article
Google Scholar
Shibahara H, Shiraishi Y, Suzuki M. Diagnosis and treatment of immunologically infertile males with antisperm antibodies. Reprod Med Biol. 2005;4(2):133–41. https://doi.org/10.1111/j.1447-0578.2005.00102.x.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hendry WF, Hughes L, Scammell G, Pryor JP, Hargreave TB. Comparison of prednisolone and placebo in subfertile men with antibodies to spermatozoa. Lancet. 1990;335(8681):85–8. https://doi.org/10.1016/0140-6736(90)90548-J.
CAS
PubMed
Article
Google Scholar
Bronson RA, Cooper GW, Rosenfeld DL, Gilbert JV, Plaut AG. The effect of an IgA1 protease on immunoglobulins bound to the sperm surface and sperm cervical mucus penetrating ability. Fertil Steril. 1987;47(6):985–91. https://doi.org/10.1016/S0015-0282(16)59234-6.
CAS
PubMed
Article
Google Scholar
Gould JE, Brazil CK, Overstreet JW. Sperm-immunobead binding decreases with in vitro incubation. Fertil Steril. 1994;62(1):167–71. https://doi.org/10.1016/S0015-0282(16)56834-4.
CAS
PubMed
Article
Google Scholar
Foresta C, Varotto A, Caretto A. Immunomagnetic method to select human sperm without sperm surface-bound autoantibodies in male autoimmune infertility. Arch Androl. 1990;24(2):221–5. https://doi.org/10.3109/01485019008986883.
CAS
PubMed
Article
Google Scholar
Agarwal A. Treatment of immunological infertility by sperm washing and intrauterine insemination. Arch Androl. 1992;29(3):207–13. https://doi.org/10.3109/01485019208987726.
CAS
PubMed
Article
Google Scholar
Shulman S. Use of washed sperm for removal of sperm antibodies. In: David G, Price WS, (eds). Human Artificial Insemination and Semen Preservation. Boston, MA: Springer; 1980. p. 589–92. https://doi.org/10.1007/978-1-4684-8824-1_751980.
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology. 2017;5(2):204–18. https://doi.org/10.1111/andr.12320.
CAS
PubMed
PubMed Central
Article
Google Scholar
Comar VA, Petersen CG, Mauri AL, Mattila M, Vagnini LD, Renzi A, et al. Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assisted Reprod. 2017;21(4):306–12. https://doi.org/10.5935/1518-0557.20170052.
Article
Google Scholar
Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45. https://doi.org/10.1093/humupd/dmg027.
CAS
PubMed
Article
Google Scholar
Du Plessis SS, McAllister DA, Luu A, Savia J, Agarwal A, Lampiao F. Effects of H2O2 exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia. 2010;42(3):206–10. https://doi.org/10.1111/j.1439-0272.2009.00980.x.
PubMed
Article
Google Scholar
Shen Z-Q, Shi B, Wang T-R, Jiao J, Shang X, Wu Q-J et al. Characterization of the Sperm Proteome and Reproductive Outcomes with in vitro fertilization after a reduction in male ejaculatory abstinence period. Mol Cell Proteomics. 2018:mcp.RA117.000541. https://doi.org/10.1074/mcp.RA117.000541.
Alipour H, Van Der Horst G, Christiansen OB, Dardmeh F, Jørgensen N, Nielsen HI, et al. Improved sperm kinematics in semen samples collected after 2 h versus 4–7 days of ejaculation abstinence. Hum Reprod. 2017;32(7):1364–72. https://doi.org/10.1093/humrep/dex101.
CAS
PubMed
Article
Google Scholar
Dupesh S, Pandiyan N, Pandiyan R, Kartheeswaran J, Prakash B. Ejaculatory abstinence in semen analysis: does it make any sense? Ther Adv Reprod Health. 2020;14. https://doi.org/10.1177/2633494120906882.
Elzanaty S, Malm J, Giwercman A. Duration of sexual abstinence: epididymal and accessory sex gland secretions and their relationship to sperm motility. Hum Reprod. 2005;20(1):221–5. https://doi.org/10.1093/humrep/deh586.
PubMed
Article
Google Scholar
Ricci E, Al Beitawi S, Cipriani S, Candiani M, Chiaffarino F, Viganò P, et al. Semen quality and alcohol intake: a systematic review and meta-analysis. Reprod BioMed Online. 2017;34(1):38–47. https://doi.org/10.1016/j.rbmo.2016.09.012.
CAS
PubMed
Article
Google Scholar
Ricci E, Noli S, Ferrari S, La Vecchia I, Cipriani S, De Cosmi V, et al. Alcohol intake and semen variables: cross-sectional analysis of a prospective cohort study of men referring to an Italian Fertility Clinic. Andrology. 2018;6(5):690–6.
CAS
PubMed
Article
Google Scholar
Silva JV, Cruz D, Gomes M, Correia BR, Freitas MJ, Sousa L, et al. Study on the short-term effects of increased alcohol and cigarette consumption in healthy young men’s seminal quality. Sci Rep. 2017;7:45457. https://doi.org/10.1038/srep45457.
CAS
PubMed
PubMed Central
Article
Google Scholar
de Jong AME, Menkveld R, Lens JW, Nienhuis SE, Rhemrev JPT. Effect of alcohol intake and cigarette smoking on sperm parameters and pregnancy. Andrologia. 2014;46(2):112–7. https://doi.org/10.1111/and.12054.
PubMed
Article
Google Scholar
Goverde HJ, Dekker HS, Janssen HJ, Bastiaans BA, Rolland R, Zielhuis GA. Semen quality and frequency of smoking and alcohol consumption: an explorative study. Int J Fertil Menopausal Stud. 1995;40(3):135–8.
CAS
PubMed
Google Scholar
Vicari E, Arancio A, Giuffrida V, D’Agata R, Calogero AE. A case of reversible azoospermia following withdrawal from alcohol consumption. J Endocrinol Investig. 2002;25(5):473–6. https://doi.org/10.1007/BF03344041.
CAS
Article
Google Scholar
Sermondade N, Elloumi H, Berthaut I, Mathieu E, Delarouzière V, Ravel C, et al. Progressive alcohol-induced sperm alterations leading to spermatogenic arrest, which was reversed after alcohol withdrawal. Reprod BioMed Online. 2010;20(3):324–7. https://doi.org/10.1016/j.rbmo.2009.12.003.
PubMed
Article
Google Scholar
Mostafa RM, Nasrallah YS, Hassan MM, Farrag AF, Majzoub A, Agarwal A. The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia. 2018;50(3):e12910. https://doi.org/10.1111/and.12910.
CAS
Article
Google Scholar
Dai J-B, Wang Z-X, Qiao Z-D. The hazardous effects of tobacco smoking on male fertility. Asian J Andrology. 2015;17(6):954–60. https://doi.org/10.4103/1008-682x.150847.
CAS
Article
Google Scholar
Gandini L, Lombardo F, Lenzi A, Culasso F, Pacifici R, Zuccaro P et al. The in-vitro effects of nicotine and cotinine on sperm motility. Human reproduction (Oxford, England). 1997;12(4):727-33.
Kiziler AR, Aydemir B, Onaran I, Alici B, Ozkara H, Gulyasar T, et al. High levels of cadmium and lead in seminal fluid and blood of smoking men are associated with high oxidative stress and damage in infertile subjects. Biol Trace Elem Res. 2007;120(1-3):82–91.
CAS
PubMed
Article
Google Scholar
Belloc S, Cohen-Bacrie M, Amar E, Izard V, Benkhalifa M, Dalléac A, et al. High body mass index has a deleterious effect on semen parameters except morphology: results from a large cohort study. Fertil Steril. 2014;102(5):1268–73. https://doi.org/10.1016/j.fertnstert.2014.07.1212.
PubMed
Article
Google Scholar
Maldonado-Cárceles AB, Mínguez-Alarcón L, Mendiola J, Vioque J, Jørgensen N, Árense-Gonzalo JJ, et al. Meat intake in relation to semen quality and reproductive hormone levels among young men in Spain. Br J Nutr. 2019;121(4):451–60. https://doi.org/10.1017/s0007114518003458.
PubMed
PubMed Central
Article
Google Scholar
Jóźków P, Rossato M. The impact of intense exercise on semen quality. Am J Mens Health. 2017;11(3):654–62. https://doi.org/10.1177/1557988316669045.
PubMed
Article
Google Scholar
Gorpinchenko I, Nikitin O, Banyra O, Shulyak A. The influence of direct mobile phone radiation on sperm quality. Central Eur J Urol. 2014;67(1):65–71. https://doi.org/10.5173/ceju.2014.01.art14.
Article
Google Scholar
Avendano C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97(1):39–45.e2. https://doi.org/10.1016/j.fertnstert.2011.10.012.
PubMed
Article
Google Scholar
Liu M-M, Liu L, Chen L, Yin X-J, Liu H, Zhang Y-H, et al. Sleep deprivation and late bedtime impair sperm health through increasing antisperm antibody production: a prospective study of 981 healthy men. Med Sci Monit. 2017. https://doi.org/10.12659/MSM.900101.
Anderson K, Nisenblat V, Norman R. Lifestyle factors in people seeking infertility treatment – a review. Aust N Z J Obstet Gynaecol. 2010;50(1):8–20. https://doi.org/10.1111/j.1479-828X.2009.01119.x.
PubMed
Article
Google Scholar
Williams DH, Karpman E, Sander JC, Spiess PE, Pisters LL, Lipshultz LI. Pretreatment semen parameters in men with cancer. J Urol. 2009;181(2):736–40. https://doi.org/10.1016/j.juro.2008.10.023.
PubMed
Article
Google Scholar
Dias TR, Agarwal A, Pushparaj PN, Ahmad G, Sharma R. Reduced semen quality in patients with testicular cancer seminoma is associated with alterations in the expression of sperm proteins. Asian J Androl. 2020;22(1):88–93. https://doi.org/10.4103/aja.aja_17_19.
CAS
PubMed
Article
Google Scholar
Hendry WF, Stedronska J, Jones CR, Blackmore CA, Barreit A, Peckham MJ. Semen analysis in testicular cancer and Hodgkin’s disease: pre- and post-treatment findings and implications for cryopreservation. Br J Urol. 1983;55(6):769–73. https://doi.org/10.1111/j.1464-410X.1983.tb03423.x.
CAS
PubMed
Article
Google Scholar
Ding J, Shang X, Zhang Z, Jing H, Shao J, Fei Q, et al. FDA-approved medications that impair human spermatogenesis. Oncotarget. 2017;8(6):10714–25. https://doi.org/10.18632/oncotarget.12956.
PubMed
Article
Google Scholar
Levin RM, Amsterdam JD, Winokur A, Wein AJ. Effects of psychotropic drugs on human sperm motility. Fertil Steril. 1981;36(4):503–6. https://doi.org/10.1016/S0015-0282(16)45801-2.
CAS
PubMed
Article
Google Scholar
Chen SS, Shen MR, Chen TJ, Lai SL. Effects of antiepileptic drugs on sperm motility of normal controls and epileptic patients with long-term therapy. Epilepsia. 1992;33(1):149–53.
CAS
PubMed
Article
Google Scholar
Banihani SA. Effect of paracetamol on semen quality. Andrologia. 2018;50(1):e12874. https://doi.org/10.1111/and.12874.
CAS
Article
Google Scholar
Banihani SA, Khasawneh FH. Effect of lansoprazole on human sperm motility, sperm viability, seminal nitric oxide production, and seminal calcium chelation. Res Pharm Sci. 2018;13(5):460–8. https://doi.org/10.4103/1735-5362.236839.
PubMed
PubMed Central
Article
Google Scholar
Stutz G, Zamudio J, Santillán ME, Vincenti L, De Cuneo MF, Ruiz RD. The effect of alcohol, tobacco, and aspirin consumption on seminal quality among healthy young men. Arch Environ Health Int J. 2004;59(11):548–52. https://doi.org/10.1080/00039890409603432.
CAS
Article
Google Scholar
Du Plessis SS, Agarwal A, Syriac A. Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility. J Assist Reprod Genet. 2015;32(11):1575–88. https://doi.org/10.1007/s10815-015-0553-8.
PubMed
PubMed Central
Article
Google Scholar
Wdowiak A, Skrzypek M, Stec M, Panasiuk L. Effect of ionizing radiation on the male reproductive system. Ann Agric Environ Med. 2019;26(2):210–6. https://doi.org/10.26444/aaem/106085.
CAS
PubMed
Article
Google Scholar
Zhou DD, Hao JL, Guo KM, Lu CW, Liu XD. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15018078.
Ohkita TA. Acute Effects. J Radiat Res. 1975;16(Suppl_1):49–66. https://doi.org/10.1269/jrr.16.Suppl_1.49.
Article
Google Scholar
Andreychenko SV, Klepko AV, Gorban LV, Motryna OA, Grubska LV, Trofimenko OV. Post-Chornobyl remote radiation effects on human sperm and seminal plasma characteristics. Exp Oncol. 2016;38(4):245–51.
CAS
PubMed
Article
Google Scholar
Mohammadi S, Kianmehr M, Mohammadi M, Fahimian Z, Karimimanesh E, Farazifar M, et al. Correlation between expression of CatSper1,2 and sperm parameters in the gamma irradiated adult mouse testis. Int J Radiat Biol. 2019;95(6):691–6. https://doi.org/10.1080/09553002.2019.1552372.
CAS
PubMed
Article
Google Scholar
Li HY, Zhang H. Proteome analysis for profiling infertility markers in male mouse sperm after carbon ion radiation. Toxicology. 2013;306:85–92.
CAS
PubMed
Article
Google Scholar
Kesari KK, Agarwal A, Henkel R. Radiations and male fertility. Reprod Biol Endocrinol. 2018;16(1):118. https://doi.org/10.1186/s12958-018-0431-1.
CAS
PubMed
PubMed Central
Article
Google Scholar
De Felice F, Marchetti C, Marampon F, Cascialli G, Muzii L, Tombolini V. Radiation effects on male fertility. Andrology. 2019;7(1):2–7. https://doi.org/10.1111/andr.12562.
PubMed
Article
Google Scholar
Thonneau P, Bujan L, Multigner L, Mieusset R. Occupational heat exposure and male fertility: a review. Hum Reprod. 1998;13(8):2122–5. https://doi.org/10.1093/humrep/13.8.2122.
CAS
PubMed
Article
Google Scholar
Wechalekar H, Setchell BP, Peirce EJ, Ricci M, Leigh C, Breed WG. Whole-body heat exposure induces membrane changes in spermatozoa from the cauda epididymidis of laboratory mice. Asian J Androl. 2010;12(4):591–8. https://doi.org/10.1038/aja.2010.41.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gong Y, Guo H, Zhang Z, Zhou H, Zhao R, He B. Heat stress reduces sperm motility via activation of glycogen synthase kinase-3α and inhibition of mitochondrial protein import. Front Physiol. 2017;8(718). https://doi.org/10.3389/fphys.2017.00718.
Rao M, Xia W, Yang J, Hu L-X, Hu S-F, Lei H, et al. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology. 2016;4(6):1054–63. https://doi.org/10.1111/andr.12228.
CAS
PubMed
Article
Google Scholar
Kanter M, Aktas C, Erboga M. Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term: an immunohistochemical and ultrastructural study. Toxicol Ind Health. 2013;29(2):99–113. https://doi.org/10.1177/0748233711425082.
CAS
PubMed
Article
Google Scholar
Laven JSE, Haverkorn MJ, Bots RSGM. Influence of occupation and living habits on semen quality in men (scrotal insulation and semen quality). Eur J Obstet Gynecol Reprod Biol. 1988;29(2):137–41. https://doi.org/10.1016/0028-2243(88)90140-2.
CAS
PubMed
Article
Google Scholar
Priskorn L, Jensen TK, Bang AK, Nordkap L, Joensen UN, Lassen TH, et al. Is sedentary lifestyle associated with testicular function? A cross-sectional study of 1,210 men. Am J Epidemiol. 2016;184(4):284–94. https://doi.org/10.1093/aje/kwv338.
PubMed
Article
Google Scholar
Mínguez-Alarcón L, Gaskins AJ, Chiu Y-H, Messerlian C, Williams PL, Ford JB, et al. Type of underwear worn and markers of testicular function among men attending a fertility center. Hum Reprod. 2018;33(9):1749–56. https://doi.org/10.1093/humrep/dey259.
CAS
PubMed
PubMed Central
Article
Google Scholar
Saikhun J, Kitiyanant Y, Vanadurongwan V, Pavasuthipaisit K. Effects of sauna on sperm movement characteristics of normal men measured by computer-assisted sperm analysis. Int J Androl. 1998;21(6):358–63. https://doi.org/10.1046/j.1365-2605.1998.00138.x.
CAS
PubMed
Article
Google Scholar
Hauser R, Williams P, Altshul L, Calafat AM. Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ Health Perspect. 2005;113(4):425–30.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li D-K, Zhou Z, Miao M, He Y, Wang J, Ferber J, et al. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril. 2011;95(2):625–30.e4. https://doi.org/10.1016/j.fertnstert.2010.09.026.
CAS
PubMed
Article
Google Scholar
Cherry N, Moore H, McNamee R, Pacey A, Burgess G, Clyma JA, et al. Occupation and male infertility: glycol ethers and other exposures. Occup Environ Med. 2008;65(10):708–14. https://doi.org/10.1136/oem.2007.035824.
CAS
PubMed
Article
Google Scholar
Governini L, Guerranti C, De Leo V, Boschi L, Luddi A, Gori M, et al. Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds. Andrologia. 2015;47(9):1012–9.
CAS
PubMed
Article
Google Scholar
Mocarelli P, Gerthoux PM, Patterson DG, Milani S, Limonta G, Bertona M, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–7. https://doi.org/10.1289/ehp.10399.
CAS
PubMed
Article
Google Scholar
Mendiola J, Moreno JM, Roca M, Vergara-Juárez N, Martínez-García MJ, García-Sánchez A, et al. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environ Health. 2011;10(1):6. https://doi.org/10.1186/1476-069X-10-6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pant N, Kumar R, Mathur N, Srivastava SP, Saxena DK, Gujrati VR. Chlorinated pesticide concentration in semen of fertile and infertile men and correlation with sperm quality. Environ Toxicol Pharmacol. 2007;23(2):135–9. https://doi.org/10.1016/j.etap.2006.07.012.
CAS
PubMed
Article
Google Scholar
Fredricsson B, Möller L, Pousette Å, Westerholm R. Human sperm motility is affected by plasticizers and diesel particle extracts. Pharmacol Toxicol. 1993;72(2):128–33. https://doi.org/10.1111/j.1600-0773.1993.tb00303.x.
CAS
PubMed
Article
Google Scholar
Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20. https://doi.org/10.1016/j.aju.2017.12.004.
PubMed
PubMed Central
Article
Google Scholar
Clarke RN, Klock SC, Geoghegan A, Travassos DE. Relationship between psychological stress and semen quality among in-vitro fertilization patients. Hum Reprod. 1999;14(3):753–8. https://doi.org/10.1093/humrep/14.3.753.
CAS
PubMed
Article
Google Scholar
Nargund VH. Effects of psychological stress on male fertility. Nature Rev Urol. 2015;12(7):373–82. https://doi.org/10.1038/nrurol.2015.112.
CAS
Article
Google Scholar
Ubuka T, Son YL, Tobari Y, Narihiro M, Bentley G, Kriegsfeld L, et al. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor. Front Endocrinol. 2014;5(8). https://doi.org/10.3389/fendo.2014.00008.
Kirby ED, Geraghty AC, Ubuka T, Bentley GE, Kaufer D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc Natl Acad Sci. 2009. https://doi.org/10.1073/pnas.0901176106.
Eskiocak S, Gozen AS, Taskiran A, Kilic AS, Eskiocak M, Gulen S. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz J Med Biol Res. 2006;39:581–8.
CAS
PubMed
Article
Google Scholar
Gimenes F, Souza RP, Bento JC, Teixeira JJV, Maria-Engler SS, Bonini MG, et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nature Rev Urol. 2014;11(12):672–87. https://doi.org/10.1038/nrurol.2014.285.
Article
Google Scholar
Shang Y, Liu C, Cui D, Han G, Yi S. The effect of chronic bacterial prostatitis on semen quality in adult men: a meta-analysis of case-control studies. Sci Rep. 2014;4(1):7233. https://doi.org/10.1038/srep07233.
CAS
PubMed
PubMed Central
Article
Google Scholar
Eley A, Pacey AA, Galdiero M, Galdiero M, Galdiero F. Can Chlamydia trachomatis directly damage your sperm? Lancet Infect Dis. 2005;5(1):53–7. https://doi.org/10.1016/S1473-3099(04)01254-X.
PubMed
Article
Google Scholar
Zhou YH, Ma HX, Shi XX, Liu Y. Ureaplasma spp. in male infertility and its relationship with semen quality and seminal plasma components. J Microbiol Immunol Infect. 2018;51(6):778–83. https://doi.org/10.1016/j.jmii.2016.09.004.
PubMed
Article
Google Scholar
Burrello N, Salmeri M, Perdichizzi A, Bellanca S, Pettinato G, D'Agata R, et al. Candida albicans experimental infection: effects on human sperm motility, mitochondrial membrane potential and apoptosis. Reprod BioMed Online. 2009;18(4):496–501. https://doi.org/10.1016/S1472-6483(10)60125-3.
PubMed
Article
Google Scholar
Lorusso F, Palmisano M, Chironna M, Vacca M, Masciandaro P, Bassi E, et al. Impact of chronic viral diseases on semen parameters. Andrologia. 2010;42(2):121–6.
CAS
PubMed
Article
Google Scholar
Foresta C, Garolla A, Zuccarello D, Pizzol D, Moretti A, Barzon L, et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil Steril. 2010;93(3):802–6. https://doi.org/10.1016/j.fertnstert.2008.10.050.
PubMed
Article
Google Scholar
Kapranos N, Petrakou E, Anastasiadou C, Kotronias D. Detection of herpes simplex virus, cytomegalovirus, and Epstein-Barr virus in the semen of men attending an infertility clinic. Fertil Steril. 2003;79:1566–70. https://doi.org/10.1016/S0015-0282(03)00370-4.
PubMed
Article
Google Scholar
Rohde V, Erles K, Sattler HP, Derouet H, Wullich B, Schlehofer JR. Detection of adeno-associated virus in human semen: does viral infection play a role in the pathogenesis of male infertility? Fertil Steril. 1999;72(5):814–6.
CAS
PubMed
Article
Google Scholar
Segars J, Katler Q, McQueen DB, Kotlyar A, Glenn T, Knight Z, et al. Prior and novel coronaviruses, coronavirus disease 2019 (COVID-19), and human reproduction: what is known? Fertil Steril. 2020;113(6):1140–9. https://doi.org/10.1016/j.fertnstert.2020.04.025.
CAS
PubMed
PubMed Central
Article
Google Scholar
Garolla A, De Toni L, Bottacin A, Valente U, De Rocco PM, Di Nisio A, et al. Human papillomavirus prophylactic vaccination improves reproductive outcome in infertile patients with HPV semen infection: a retrospective study. Sci Rep. 2018;8(1):912. https://doi.org/10.1038/s41598-018-19369-z.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mishra AK, Kumar A, Swain DK, Yadav S, Nigam R. Insights into pH regulatory mechanisms in mediating spermatozoa functions. Vet World. 2018;11(6):852–8. https://doi.org/10.14202/vetworld.2018.852-858.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod. 2011;17(8):478–99. https://doi.org/10.1093/molehr/gar044.
CAS
PubMed
PubMed Central
Article
Google Scholar
Benoff S, Cooper GW, Hurley I, Mandel FS, Rosenfeld DL, Scholl GM, et al. The effect of calcium ion channel blockers on sperm fertilization potential. Fertil Steril. 1994;62(3):606–17. https://doi.org/10.1016/S0015-0282(16)56953-2.
CAS
PubMed
Article
Google Scholar
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases — similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842(12, Part B):2535–47. https://doi.org/10.1016/j.bbadis.2014.08.012.
CAS
Article
Google Scholar
Pereira R, Sa R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Andrology. 2017;19(1):5–14. https://doi.org/10.4103/1008-682x.167716.
CAS
Article
Google Scholar
Yutaka T, Naomichi O, Yoshiki S. The activating effects of bicarbonate on sperm motility and respiration at ejaculation. Biochim Biophys Acta Gen Subj. 1987;924(3):519–29. https://doi.org/10.1016/0304-4165(87)90168-1.
Article
Google Scholar
Luconi M, Porazzi I, Ferruzzi P, Marchiani S, Forti G, Baldi E. Tyrosine phosphorylation of the A kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate. Biol Reprod. 2005;72(1):22–32. https://doi.org/10.1095/biolreprod.104.032490.
CAS
PubMed
Article
Google Scholar
Amaral A, Paiva C, Attardo Parrinello C, Estanyol JM, Ballescà JL, Ramalho-Santos J, et al. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res. 2014;13(12):5670–84. https://doi.org/10.1021/pr500652y.
CAS
PubMed
Article
Google Scholar
Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2009;16(3):231–45. https://doi.org/10.1093/humupd/dmp048.
PubMed
Article
Google Scholar
McLachlan RI. Approach to the patient with oligozoospermia. J Clin Endocrinol Metab. 2013;98(3):873–80. https://doi.org/10.1210/jc.2012-3650.
CAS
PubMed
Article
Google Scholar
Tan O, Ha T, Carr BR, Nakonezny P, Doody KM, Doody KJ. Predictive value of postwashed total progressively motile sperm count using CASA estimates in 6871 non-donor intrauterine insemination cycles. J Assist Reprod Genet. 2014;31(9):1147–53. https://doi.org/10.1007/s10815-014-0306-0.
PubMed
PubMed Central
Article
Google Scholar
Joshi N, Kodwany G, Balaiah D, Parikh M, Parikh F. The importance of computer-assisted semen analysis and sperm function testing in an IVF program. Int J Fertil Menopausal Stud. 1996;41(1):46–52.
CAS
PubMed
Google Scholar
Larsen L, Scheike T, Jensen TK, Bonde JP, Ernst E, Hjollund NH, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. Hum Reprod. 2000;15(7):1562–7.
CAS
PubMed
Article
Google Scholar
Mankus EB, Holden AE, Seeker PM, Kampschmidt JC, McLaughlin JE, Schenken RS, et al. Prewash total motile count is a poor predictor of live birth in intrauterine insemination cycles. Fertil Steril. 2019;111(4):708–13. https://doi.org/10.1016/j.fertnstert.2018.12.025.
PubMed
PubMed Central
Article
Google Scholar
Lemmens L, Kos S, Beijer C, Brinkman JW, van der Horst FA, van den Hoven L, et al. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination. Fertil Steril. 2016;105(6):1462–8. https://doi.org/10.1016/j.fertnstert.2016.02.012.
PubMed
Article
Google Scholar
Akanji Tijani H, Bhattacharya S. The role of intrauterine insemination in male infertility. Hum Fertil. 2010;13(4):226–32. https://doi.org/10.3109/14647273.2010.533811.
Article
Google Scholar
Tomlinson M, Lewis S, Morroll D. Sperm quality and its relationship to natural and assisted conception: British Fertility Society Guidelines for practice. Hum Fertil. 2013;16(3):175–93. https://doi.org/10.3109/14647273.2013.807522.
Article
Google Scholar
Group TECW. Intrauterine insemination. Hum Reprod Update. 2009;15(3):265–77. https://doi.org/10.1093/humupd/dmp003.
Article
Google Scholar
Ombelet W, Dhont N, Thijssen A, Bosmans E, Kruger T. Semen quality and prediction of IUI success in male subfertility: a systematic review. Reprod BioMed Online. 2014;28(3):300–9. https://doi.org/10.1016/j.rbmo.2013.10.023.
PubMed
Article
Google Scholar
Lemmens L, Kos S, Beijer C, Brinkman JW, van der Horst FAL, van den Hoven L, et al. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination. Fertil Steril. 2016;105(6):1462–8. https://doi.org/10.1016/j.fertnstert.2016.02.012.
PubMed
Article
Google Scholar
Hajder E. Mithad Hajder1, Elmira Hajder2, Amela Husic2. medical archives. 2016:39.
Michelmann HW. Minimal criteria of sperm quality for insemination and IVF therapy. Int J Androl. 1995;18(Suppl 2):81–7.
PubMed
Google Scholar
Donnelly ET, Lewis SE, McNally JA, Thompson W. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril. 1998;70(2):305–14.
CAS
PubMed
Article
Google Scholar
Liu DY, Clarke GN, Baker HWG. Relationship between sperm motility assessed with the Hamilton-Thorn motility analyzer and fertilization rates in vitro. J Androl. 1991;12(4):231–9. https://doi.org/10.1002/j.1939-4640.1991.tb00258.x.
CAS
PubMed
Article
Google Scholar
Moghadam KK, Nett R, Robins JC, Thomas MA, Awadalla SG, Scheiber MD, et al. The motility of epididymal or testicular spermatozoa does not directly affect IVF/ICSI pregnancy outcomes. J Androl. 2005;26(5):619–23. https://doi.org/10.2164/jandrol.05018.
PubMed
Article
Google Scholar
Dang VQ, Vuong LN, Ho TM, Ha AN, Nguyen QN, Truong BT, et al. The effectiveness of ICSI versus conventional IVF in couples with non-male factor infertility: study protocol for a randomised controlled trial. Human Reprod Open. 2019;2019(2):hoz006. https://doi.org/10.1093/hropen/hoz006.
CAS
Article
Google Scholar
Bartolacci A, Pagliardini L, Makieva S, Salonia A, Papaleo E, Viganò P. Abnormal sperm concentration and motility as well as advanced paternal age compromise early embryonic development but not pregnancy outcomes: a retrospective study of 1266 ICSI cycles. J Assist Reprod Genet. 2018;35(10):1897–903.
PubMed
PubMed Central
Article
Google Scholar
Mazzilli R, Cimadomo D, Vaiarelli A, Capalbo A, Dovere L, Alviggi E, et al. Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles. Fertil Steril. 2017;108(6):961–72. e3.
PubMed
Article
Google Scholar
Miller JE, Smith TT. The effect of intracytoplasmic sperm injection and semen parameters on blastocyst development in vitro. Hum Reprod. 2001;16(5):918–24.
CAS
PubMed
Article
Google Scholar
Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50. https://doi.org/10.1039/C3LC51254A.
CAS
PubMed
Article
Google Scholar
Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2005;20(4):1006–12. https://doi.org/10.1093/humrep/deh725.
CAS
PubMed
Article
Google Scholar
Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, et al. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril. 2009;91(5):1785–92.
CAS
PubMed
Article
Google Scholar
Costa M, Canale D, Filicori M, D'Lddio S, Lenzi A. L-carnitine in idiopathic asthenozoospermia: a multicenter study. Italian Study Group on Carnitine and Male Infertility. Andrologia. 1994;26(3):155–9.
CAS
PubMed
Article
Google Scholar
Akmal M, Qadri JQ, Al-Waili NS, Thangal S, Haq A, Saloom KY. Improvement in human semen quality after oral supplementation of vitamin C. J Med Food. 2006;9(3):440–2. https://doi.org/10.1089/jmf.2006.9.440.
CAS
PubMed
Article
Google Scholar
Gupta NP, Kumar R. Lycopene therapy in idiopathic male infertility – a preliminary report. Int Urol Nephrol. 2002;34(3):369–72. https://doi.org/10.1023/A:1024483520560.
CAS
PubMed
Article
Google Scholar
Moslemi M, Tavanbakhsh S. Selenium-vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med. 2011;4:99–104. https://doi.org/10.2147/IJGM.S16275.
CAS
PubMed
PubMed Central
Article
Google Scholar
Omu AE, Al-Azemi MK, Kehinde EO, Anim JT, Oriowo MA, Mathew TC. Indications of the mechanisms Involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–16. https://doi.org/10.1159/000112963.
CAS
PubMed
Article
Google Scholar
Scott M. Yates, Hussain, Dixon. The effect of oral selenium supplementation on human sperm motility. Br J Urol. 1998;82(1):76–80. https://doi.org/10.1046/j.1464-410x.1998.00683.x.
CAS
PubMed
Article
Google Scholar
Sigman M, Glass S, Campagnone J, Pryor JL. Carnitine for the treatment of idiopathic asthenospermia: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 2006;85(5):1409–14. https://doi.org/10.1016/j.fertnstert.2005.10.055.
PubMed
Article
Google Scholar
Tsounapi P, Honda M, Dimitriadis F, Koukos S, Hikita K, Zachariou A, et al. Effects of a micronutrient supplementation combined with a phosphodiesterase type 5 inhibitor on sperm quantitative and qualitative parameters, percentage of mature spermatozoa and sperm capacity to undergo hyperactivation: a randomised controlled trial. Andrologia. 2018;50(8):e13071. https://doi.org/10.1111/and.13071.
CAS
PubMed
Article
Google Scholar
Safarinejad MR. Effect of pentoxifylline on semen parameters, reproductive hormones, and seminal plasma antioxidant capacity in men with idiopathic infertility: a randomized double-blind placebo-controlled study. Int Urol Nephrol. 2011;43(2):315–28.
CAS
PubMed
Article
Google Scholar
Rŏnnberg L. The effect of clomiphene treatment on different sperm parameters in men with idiopathic oligozoospermia. Andrologia. 1980;12(3):261–5.
PubMed
Article
Google Scholar
Nasimi Doost Azgomi R, Nazemiyeh H, Sadeghi Bazargani H, Fazljou SMB, Nejatbakhsh F, Moini Jazani A, et al. Comparative evaluation of the effects of Withania somnifera with pentoxifylline on the sperm parameters in idiopathic male infertility: a triple-blind randomised clinical trial. Andrologia. 2018;50(7):e13041. https://doi.org/10.1111/and.13041.
CAS
PubMed
Article
Google Scholar
Nayak G, Honguntikar SD, Kalthur SG, D'Souza AS, Mutalik S, Setty MM, et al. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage. J Ethnopharmacol. 2016;182:101–9. https://doi.org/10.1016/j.jep.2016.02.003.
CAS
PubMed
Article
Google Scholar
Nayak G, Vadinkar A, Nair S, Kalthur SG, D'Souza AS, Shetty P, et al. Sperm abnormalities induced by pre-pubertal exposure to cyclophosphamide are effectively mitigated by Moringa oleifera leaf extract. Andrologia. 2016;48(2):125–36.
CAS
PubMed
Article
Google Scholar
Nantia EA, Moundipa PF, Monsees TK, Carreau S. Medicinal plants as potential male anti-infertility agents: a review. Basic Clin Andrology. 2009;19(3):148–58. https://doi.org/10.1007/s12610-009-0030-2.
Article
Google Scholar
Agrawal H, Kulkarni K. Efficacy and safety of speman in patients with oligospermia: an open clinical study. Indian J Clin Pract. 2003;14.
Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3′,5′monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996;55(3):684–92. https://doi.org/10.1095/biolreprod55.3.684.
CAS
PubMed
Article
Google Scholar
Tardif S, Madamidola OA, Brown SG, Frame L, Lefièvre L, Wyatt PG, et al. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity. Hum Reprod. 2014;29(10):2123–35. https://doi.org/10.1093/humrep/deu196.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lanzafame F, Chapman MG, Guglielmino A, Gearon CM, Forman RG. Pharmacological stimulation of sperm motility. Hum Reprod. 1994;9(2):192–9. https://doi.org/10.1093/oxfordjournals.humrep.a138481.
CAS
PubMed
Article
Google Scholar
Liu J-H, Li Y, Cao Z-G, Ye Z-Q. Influences of dibutyryl cyclic adenosine monophosphate and forskolin on human sperm motility in vitro. Asian J Andrology. 2003;5(2):113–5.
CAS
Google Scholar
Hammitt DG, Bedia E, Rogers PR, Syrop CH, Donovan JF, Williamson RA. Comparison of motility stimulants for cryopreserved human semen. Fertil Steril. 1989;52(3):495–502. https://doi.org/10.1016/S0015-0282(16)60925-1.
CAS
PubMed
Article
Google Scholar
Aitken RJ, Mattei A, Irvine S. Paradoxical stimulation of human sperm motility by 2-deoxyadenosine. J Reprod Fertil. 1986;78(2):515–27. https://doi.org/10.1530/jrf.0.0780515.
CAS
PubMed
Article
Google Scholar
Luconi M, Marra F, Gandini L, Filimberti E, Lenzi A, Forti G, et al. Phosphatidylinositol 3-kinase inhibition enhances human sperm motility. Hum Reprod. 2001;16(9):1931–7. https://doi.org/10.1093/humrep/16.9.1931.
CAS
PubMed
Article
Google Scholar
Mendeluk GR, Rosales M. Thyroxin is useful to improve sperm motility. Int J Fertil Steril. 2016;10(2):208–14. https://doi.org/10.22074/ijfs.2016.4911.
CAS
PubMed
PubMed Central
Article
Google Scholar
Moosavi S, Ganji H, Ramezanikhah H, Arianmanesh M. Human chorionic gonadotropin in vitro: effects on rat sperm motility and fertilization outcome. Asian Pac J Reprod. 2018;7(5):225–8. https://doi.org/10.4103/2305-0500.241206.
CAS
Article
Google Scholar
Essig M, Schoenfeld C, Amelar RD, Dubin L, Weiss G. Stimulation of human sperm motility by relaxin. Fertil Steril. 1982;38(3):339–43. https://doi.org/10.1016/s0015-0282(16)46516-7.
CAS
PubMed
Article
Google Scholar
Grassi G, Cappello N, Gheorghe MF, Salton L, Di Bisceglie C, Manieri C, et al. Exogenous platelet-activating factor improves the motility of human spermatozoa evaluated with C.A.S.A.: Optimal concentration and incubation time. J Endocrinol Investig. 2010;33(10):684–90. https://doi.org/10.1007/BF03346670.
CAS
Article
Google Scholar
Lampiao F, Du Plessis SS. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian J Andrology. 2008;10(5):799–807. https://doi.org/10.1111/j.1745-7262.2008.00421.x.
CAS
Article
Google Scholar
Kalthur G, Kumar P, Adiga SK. Enhancement in motility of sperm co-incubated with cumulus oocyte complex (COC) in vitro. Eur J Obstet Gynecol Reprod Biol. 2009;145(2):167–71. https://doi.org/10.1016/j.ejogrb.2009.05.011.
PubMed
Article
Google Scholar
Mansour RT, Aboulghar MA, Serour GI, Abbas AM, Elattar I. The life span of sperm motility and pattern in cumulus coculture. Fertil Steril. 1995;63(3):660–2. https://doi.org/10.1016/S0015-0282(16)57442-1.
CAS
PubMed
Article
Google Scholar
Mizutani T, Schill WB. Motility of seminal plasma-free spermatozoa in the presence of several physiological compounds. Andrologia. 1985;17(2):150–6. https://doi.org/10.1111/j.1439-0272.1985.tb00975.x.
CAS
PubMed
Article
Google Scholar
Salian SR, Nayak G, Kumari S, Patel S, Gowda S, Shenoy Y, et al. Supplementation of biotin to sperm preparation medium enhances fertilizing ability of spermatozoa and improves preimplantation embryo development. J Assist Reprod Genet. 2019;36(2):255–66. https://doi.org/10.1007/s10815-018-1323-1.
PubMed
Article
Google Scholar
Asadmobini A, Bakhtiari M, Khaleghi S, Esmaeili F, Mostafaei A. The effect of Tribulus terrestris extract on motility and viability of human sperms after cryopreservation. Cryobiology. 2017;75:154–9. https://doi.org/10.1016/j.cryobiol.2017.02.005.
PubMed
Article
Google Scholar
Khaleghi S, Bakhtiari M, Asadmobini A, Esmaeili F. Tribulus terrestris extract improves human sperm parameters in vitro. J Evid Based Complement Alternative Med. 2017;22(3):407–12. https://doi.org/10.1177/2156587216668110.
Article
Google Scholar
Lampiao F, Krom D. Plessis SSd. The in vitro effects of Mondia whitei on human sperm motility parameters. Phytother Res. 2008;22(9):1272–3. https://doi.org/10.1002/ptr.2469.
PubMed
Article
Google Scholar
Aparicio NJ, Schwarzstein L, De Turner EA. Pentoxifylline (BL 191) by oral administration in the treatment of asthenozoospermia. Andrologia. 1980;12(3):228–31. https://doi.org/10.1111/j.1439-0272.1980.tb00617.x.
CAS
PubMed
Article
Google Scholar
Shen M, Chiang P, Yang R, Hong C, Chen S. Pentoxifylline stimulates human sperm motility both in vitro and after oral therapy. Br J Clin Pharmacol. 1991;31(6):711–4. https://doi.org/10.1111/j.1365-2125.1991.tb05600.x.
CAS
PubMed
PubMed Central
Article
Google Scholar
Moradi M, Moradi A, Alemi M, Ahmadnia H, Abdi H, Ahmadi A, et al. Safety and efficacy of clomiphene citrate and L-carnitine in idiopathic male infertility: a comparative study. Urol J. 2010;7(3):188–93.
PubMed
Google Scholar
Check JH. Improved semen quality in subfertile males with varicocele-associated oligospermia following treatment with clomiphene citrate. Fertil Steril. 1980;33(4):423–6. https://doi.org/10.1016/S0015-0282(16)44661-3.
CAS
PubMed
Article
Google Scholar
Ghanem H, Shaeer O, El-Segini A. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility: a randomized controlled trial. Fertil Steril. 2010;93(7):2232–5.
CAS
PubMed
Article
Google Scholar
ElSheikh MG, Hosny MB, Elshenoufy A, Elghamrawi H, Fayad A, Abdelrahman S. Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia: a prospective, randomized trial. Andrology. 2015;3(5):864–7. https://doi.org/10.1111/andr.12086.
CAS
PubMed
Article
Google Scholar
Oliva A, Dotta A, Multigner L. Pentoxifylline and antioxidants improve sperm quality in male patients with varicocele. Fertil Steril. 2009;91(4 Suppl):1536–9. https://doi.org/10.1016/j.fertnstert.2008.09.024.
CAS
PubMed
Article
Google Scholar
Moslemi Mehni N, Ketabchi AA, Hosseini E. Combination effect of Pentoxifylline and L-carnitine on idiopathic oligoasthenoteratozoospermia. Iran J Reprod Med. 2014;12(12):817–24.
PubMed
PubMed Central
Google Scholar
Akmal M, Qadri JQ, Al-Waili NS, Thangal S, Haq A, Saloom KY. Improvement in human semen quality after oral supplementation of vitamin C. J Med Food. 2006;9(3):440–2. https://doi.org/10.1089/jmf.2006.9.440.
CAS
PubMed
Article
Google Scholar
Hadwan MH, Almashhedy LA, Alsalman ARS. Study of the effects of oral zinc supplementation on peroxynitrite levels, arginase activity and NO synthase activity in seminal plasma of Iraqi asthenospermic patients. Reprod Biol Endocrinol. 2014;12(1):1. https://doi.org/10.1186/1477-7827-12-1.
CAS
PubMed
PubMed Central
Article
Google Scholar
Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol. 2009;182(1):237–48. https://doi.org/10.1016/j.juro.2009.02.121.
CAS
PubMed
Article
Google Scholar
Garolla A, Maiorino M, Roverato A, Roveri A, Ursini F, Foresta C. Oral carnitine supplementation increases sperm motility in asthenozoospermic men with normal sperm phospholipid hydroperoxide glutathione peroxidase levels. Fertil Steril. 2005;83(2):355–61. https://doi.org/10.1016/j.fertnstert.2004.10.010.
CAS
PubMed
Article
Google Scholar
Ebisch IMW, Pierik FH, De Jong FH, Thomas CMG, Steegers-Theunissen RPM. Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men? Int J Androl. 2006;29(2):339–45. https://doi.org/10.1111/j.1365-2605.2005.00598.x.
CAS
PubMed
Article
Google Scholar
Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003;49(2):83–94. https://doi.org/10.1080/01485010390129269.
CAS
PubMed
Article
Google Scholar
Safarinejad MR, Safarinejad S. Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled randomized study. J Urol. 2009;181(2):741–51. https://doi.org/10.1016/j.juro.2008.10.015.
Wirleitner B, Vanderzwalmen P, Stecher A, Spitzer D, Schuff M, Schwerda D, et al. Dietary supplementation of antioxidants improves semen quality of IVF patients in terms of motility, sperm count, and nuclear vacuolization. Int J Vitam Nutr Res. 2012;82(6):391–8. https://doi.org/10.1024/0300-9831/a000136.
CAS
PubMed
Article
Google Scholar
Ahmad MK, Mahdi AA, Shukla KK, Islam N, Rajender S, Madhukar D, et al. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertil Steril. 2010;94(3):989–96. https://doi.org/10.1016/j.fertnstert.2009.04.046.
PubMed
Article
Google Scholar
Salgado R, Marques-Silva M, Gonçalves E, Mathias A, Aguiar J, Wolff P. Effect of oral administration of Tribulus terrestris extract on semen quality and body fat index of infertile men. Andrologia. 2017;49(5):e12655.
Article
Google Scholar
Ahmad MK, Mahdi AA, Shukla KK, Islam N, Jaiswar SP, Ahmad S. Effect of Mucuna pruriens on semen profile and biochemical parameters in seminal plasma of infertile men. Fertil Steril. 2008;90(3):627–35. https://doi.org/10.1016/j.fertnstert.2007.07.1314.
CAS
PubMed
Article
Google Scholar
Gonzales GF, Cordova A, Gonzales C, Chung A, Vega K, Villena A. Lepidium meyenii (Maca) improved semen parameters in adult men. Asian J Androl. 2001;3(4):301–3.
CAS
PubMed
Google Scholar
Al-Ani HKKNK. Treatment of oligozoospermic patients with a formulation of plant origin. 2013.
Google Scholar
Fisch J, Behr B, Conti M. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. Human Reprod (Oxford, England). 1998;13(5):1248–54.
CAS
Article
Google Scholar
McBrinn RC, Fraser J, Hope AG, Gray DW, Barratt CLR. Martins da Silva SJ et al. Novel pharmacological actions of trequinsin hydrochloride improve human sperm cell motility and function. Br J Pharmacol. 2019;176(23):4521–36. https://doi.org/10.1111/bph.14814.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang Y, Ma Y, Yang H, Jin Y, Hu K, Wang HX, et al. Effect of acute tadalafil on sperm motility and acrosome reaction: in vitro and in vivo studies. Andrologia. 2014;46(4):417–22. https://doi.org/10.1111/and.12097.
CAS
PubMed
Article
Google Scholar
Lefievre L, De Lamirande E, Gagnon C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J Androl. 2000;21(6):929–37.
CAS
PubMed
Google Scholar
Glenn DRJ, McVicar CM, McClure N, Lewis SEM. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil Steril. 2007;87(5):1064–70. https://doi.org/10.1016/j.fertnstert.2006.11.017.
CAS
PubMed
Article
Google Scholar
Terriou P, Hans E, Cortvrindt R, Avon C, Charles O, Salzmann J, et al. Papaverine as a replacement for pentoxifylline to select thawed testicular or epididymal spermatozoa before ICSI. Gynecol Obstet Fertil. 2015;43(12):786–90. https://doi.org/10.1016/j.gyobfe.2015.10.007.
CAS
PubMed
Article
Google Scholar
Jiang CS, Kilfeather SA, Pearson RM, Turner P. The stimulatory effects of caffeine, theophylline, lysine-theophylline and 3-isobutyl-1-methylxanthine on human sperm motility. Br J Clin Pharmacol. 1984;18(2):258–62. https://doi.org/10.1111/j.1365-2125.1984.tb02466.x.
CAS
PubMed
PubMed Central
Article
Google Scholar
Calogero AE, Fishel S, Hall J, Ferrara E, Vicari E, Green S, et al. Correlation between intracellular cAMP content, kinematic parameters and hyperactivation of human spermatozoa after incubation with pentoxifylline. Hum Reprod. 1998;13(4):911–5. https://doi.org/10.1093/humrep/13.4.911.
CAS
PubMed
Article
Google Scholar
Loughlin KR, Agarwal A. Use of theophylline to enhance sperm function. Arch Androl. 1992;28(2):99–103. https://doi.org/10.3109/01485019208987686.
CAS
PubMed
Article
Google Scholar
Shen M-R, Linden J, Chiang P-H, Chen S-S, Wu S-N. Adenosine stimulates human sperm motility via A2 receptors. J Pharm Pharmacol. 1993;45(7):650–3. https://doi.org/10.1111/j.2042-7158.1993.tb05671.x.
CAS
PubMed
Article
Google Scholar
Mbizvo MT, Johnston RC, Baker GH. The effect of the motility stimulants, caffeine, pentoxifylline, and 2-deoxyadenosine on hyperactivation of cryopreserved human sperm. Fertil Steril. 1993;59(5):1112–7.
CAS
PubMed
Article
Google Scholar
Cowart CL, London SN, Vernon MW, Pedigo NG. The effects of cyclic adenosine monophosphate, forskolin, and theophylline on motility parameters in gossypol-treated human sperm. Fertil Steril. 1994;61(5):929–34. https://doi.org/10.1016/S0015-0282(16)56708-9.
CAS
PubMed
Article
Google Scholar
Hong CY, Chiang BN, Ku J, Wei YH, Fong JC. Calcium antagonists stimulate sperm motility in ejaculated human semen. Br J Clin Pharmacol. 1985;19(1):45–9. https://doi.org/10.1111/j.1365-2125.1985.tb02611.x.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kalthur G, Salian SR, Keyvanifard F, Sreedharan S, Thomas JS, Kumar P, et al. Supplementation of biotin to sperm preparation medium increases the motility and longevity in cryopreserved human spermatozoa. J Assist Reprod Genet. 2012;29(7):631–5. https://doi.org/10.1007/s10815-012-9760-8.
PubMed
PubMed Central
Article
Google Scholar
Salian SR, Nayak G, Kumari S, Patel S, Gowda S, Shenoy Y, et al. Supplementation of biotin to sperm preparation medium enhances fertilizing ability of spermatozoa and improves preimplantation embryo development. J Assist Reprod Genet. 2019;36(2):255–66. https://doi.org/10.1007/s10815-018-1323-1.
PubMed
Article
Google Scholar
Palmieri M, Papale P, Della Ragione A, Quaranta G, Russo G, Russo S. In vitro antioxidant treatment of semen samples in assisted reproductive technology: effects of myo-inositol on nemaspermic parameters. Int J Endocrinol. 2016;2016:2839041. https://doi.org/10.1155/2016/2839041.
CAS
PubMed
PubMed Central
Article
Google Scholar
Donnelly ET, McClure N, Lewis SEM. The effect of ascorbate and α-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14(5):505–12. https://doi.org/10.1093/mutage/14.5.505.
CAS
PubMed
Article
Google Scholar
De Amicis F, Santoro M, Guido C, Russo A, Aquila S. Epigallocatechin gallate affects survival and metabolism of human sperm. Mol Nutr Food Res. 2012;56(11):1655–64. https://doi.org/10.1002/mnfr.201200190.
CAS
PubMed
Article
Google Scholar
Martinez G, Hograindleur J-P, Voisin S, Abi Nahed R. Abd El Aziz TM, Escoffier J et al. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol Hum Reprod. 2016;23(2):116–31. https://doi.org/10.1093/molehr/gaw075.
CAS
Article
Google Scholar
Kervancioglu ME, Saridogan E, Aitken RJ, Djahanbakhch O. Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in fallopian tube epithelial cell cocultures. Fertil Steril. 2000;74(4):780–4. https://doi.org/10.1016/S0015-0282(00)01514-4.
CAS
PubMed
Article
Google Scholar
Wetzels AMM, Bastiaans BA, Goverde HJM, J.G. Janssen H, Rolland R. Vero cells stimulate human sperm motility in vitro. Fertil Steril. 1991;56(3):535–9. https://doi.org/10.1016/S0015-0282(16)54554-3.
CAS
PubMed
Article
Google Scholar
Sengoku K, Tamate K, Takaoka Y, Ishikawa M. Andrology: effects of platelet activating factor on human sperm function in vitro. Hum Reprod. 1993;8(9):1443–7. https://doi.org/10.1093/oxfordjournals.humrep.a138276.
CAS
PubMed
Article
Google Scholar
Jeon B-G, Moon J-S, Kim K-C, Lee H-J, Choe S-Y, Rho G-J. Andrology: follicular fluid enhances sperm attraction and its motility in human. J Assist Reprod Genet. 2001;18(8):407–12. https://doi.org/10.1023/A:1016674302652.
CAS
PubMed
PubMed Central
Article
Google Scholar
Caille AM, Berta CL, Cuasnicú PS, Munuce MJ. Peritoneal fluid modifies the response of human spermatozoa to follicular fluid. Reprod BioMed Online. 2012;24(4):466–73.
PubMed
Article
Google Scholar
Oehninger S, Sueldo C, Lanzendorf S, Mahony M, Burkman LJ, Alexander NJ, et al. Fertilization and early embrology: a sequential analysis of the effect of progesterone on specific sperm functions crucial to fertilization in vitro in infertile patients. Hum Reprod. 1994;9(7):1322–7. https://doi.org/10.1093/oxfordjournals.humrep.a138702.
CAS
PubMed
Article
Google Scholar
Attar E, Ozsait B, Bulgurcuoglu S, Serdaroglu H, Arici A. Effect of leukaemia inhibitory factor on long-term sperm motility and survival. Reprod BioMed Online. 2003;7(1):71–4. https://doi.org/10.1016/S1472-6483(10)61731-2.
CAS
PubMed
Article
Google Scholar
Siow Y, Fallat ME, Amin FA, Belker AM. Müllerian inhibiting substance improves longevity of motility and viability of fresh and cryopreserved sperm. J Androl. 1998;19(5):568–72.
CAS
PubMed
Google Scholar
Miska W, Schill WB. Enhancement of sperm motility by bradykinin and kinin analogs. Arch Androl. 1990;25(1):63–7. https://doi.org/10.3109/01485019008987595.
CAS
PubMed
Article
Google Scholar
Fakih H, MacLusky N, DeCherney A, Wallimann T, Huszar G. Enhancement of human sperm motility and velocity in vitro: effects of calcium and creatine phosphate**Presented in part at the Forty-First Annual Meeting of The American Fertility Society, Chicago, Illinois, September 27 to October 2, 1985. Fertil Steril. 1986;46(5):938–44. https://doi.org/10.1016/S0015-0282(16)49839-0.
CAS
PubMed
Article
Google Scholar