Thornburg KL, Jacobson SL, Giraud GD, Morton MJ. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):11–4. https://doi.org/10.1016/s0146-0005(00)80047-6.
CAS
Article
PubMed
Google Scholar
Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009;24:58–71. https://doi.org/10.1152/physiol.00033.2008.
Article
Google Scholar
Bernstein IM, Meyer MC, Osol G, Ward K. Intolerance to volume expansion: a theorized mechanism for the development of preeclampsia. Obstet Gynecol. 1998;92(2):306–8. https://doi.org/10.1016/s0029-7844(98)00207-5.
CAS
Article
PubMed
Google Scholar
Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Phys Regul Integr Comp Phys. 2003;284(2):R245–58. https://doi.org/10.1152/ajpregu.00108.2002.
CAS
Article
Google Scholar
Gokina NI, Kuzina OY, Vance AM. Augmented EDHF signaling in rat uteroplacental vasculature during late pregnancy. Am J Physiol Heart Circ Physiol. 2010;299(5):H1642–52. https://doi.org/10.1152/ajpheart.00227.2010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15(6):465–71. https://doi.org/10.1097/01.gco.0000103846.69273.ba.
Article
PubMed
Google Scholar
Chesley LC. Hypertension in pregnancy: definitions, familial factor, and remote prognosis. Kidney Int. 1980;18(2):234–40. https://doi.org/10.1038/ki.1980.131.
CAS
Article
PubMed
Google Scholar
Clapp JF 3rd, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80(11):1469–73. https://doi.org/10.1016/s0002-9149(97)00738-8.
Article
PubMed
Google Scholar
Morris EA, Hale SA, Badger GJ, Magness RR, Bernstein IM. Pregnancy induces persistent changes in vascular compliance in primiparous women. Am J Obstet Gynecol. 2015;212(5):633 e1–6. https://doi.org/10.1016/j.ajog.2015.01.005.
Article
Google Scholar
Aardenburg R, Spaanderman ME, Ekhart TH, van Eijndhoven HW, van der Heijden OW, Peeters LL. Low plasma volume following pregnancy complicated by pre-eclampsia predisposes for hypertensive disease in a next pregnancy. BJOG. 2003;110(11):1001–6.
Article
Google Scholar
Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974. https://doi.org/10.1136/bmj.39335.385301.BE.
Article
PubMed
PubMed Central
Google Scholar
Karumanchi SA, Granger JP. Preeclampsia and pregnancy-related hypertensive disorders. Hypertension. 2016;67(2):238–42. https://doi.org/10.1161/HYPERTENSIONAHA.115.05024.
CAS
Article
PubMed
Google Scholar
Leslie MS, Briggs LA. Preeclampsia and the risk of future vascular disease and mortality: a review. J Midwifery Womens Health. 2016;61(3):315–24. https://doi.org/10.1111/jmwh.12469.
Article
PubMed
Google Scholar
Staff AC, Redman CW, Williams D, Leeson P, Moe K, Thilaganathan B, et al. Pregnancy and long-term maternal cardiovascular health: progress through harmonization of research cohorts and biobanks. Hypertension. 2016;67(2):251–60. https://doi.org/10.1161/HYPERTENSIONAHA.115.06357.
CAS
Article
PubMed
Google Scholar
Carpenter MW. Gestational diabetes, pregnancy hypertension, and late vascular disease. Diabetes Care. 2007;30(Suppl 2):S246–50. https://doi.org/10.2337/dc07-s224.
CAS
Article
PubMed
Google Scholar
Grinblatt JA. Number of pregnancies and risk of cardiovascular disease. N Engl J Med. 1993;329(25):1893; author reply 4-5–5. https://doi.org/10.1056/NEJM199312163292515.
CAS
Article
PubMed
Google Scholar
Hilgers RH, Bergaya S, Schiffers PM, Meneton P, Boulanger CM, Henrion D, et al. Uterine artery structural and functional changes during pregnancy in tissue kallikrein-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(10):1826–32. https://doi.org/10.1161/01.ATV.0000090672.07568.60.
CAS
Article
PubMed
Google Scholar
Bonifacino E, Schwartz EB, Jun H, Wessel CB, Corbelli JA. Effect of lactation on maternal hypertension: a systematic review. Breastfeed Med. 2018;13(9):578–88. https://doi.org/10.1089/bfm.2018.0108.
Article
PubMed
Google Scholar
Burgess A, McDowell W, Ebersold S. Association between lactation and postpartum blood pressure in women with preeclampsia. MCN Am J Matern Child Nurs. 2019;44(2):86–93. https://doi.org/10.1097/NMC.0000000000000502.
Article
PubMed
Google Scholar
Bonney EA, Howard A, Krebs K, Begin K, Veilleux K, Gokina NI. Impact of immune deficiency on remodeling of maternal resistance vasculature 4 weeks postpartum in mice. Reprod Sci. 2017;24(4):514–25. https://doi.org/10.1177/1933719116678691.
CAS
Article
PubMed
Google Scholar
Christensen KL, Mulvany MJ. Mesenteric arcade arteries contribute substantially to vascular resistance in conscious rats. J Vasc Res. 1993;30(2):73–9. https://doi.org/10.1159/000158978.
CAS
Article
PubMed
Google Scholar
Fenger-Gron J, Mulvany MJ, Christensen KL. Intestinal blood flow is controlled by both feed arteries and microcirculatory resistance vessels in freely moving rats. J Physiol. 1997;498(Pt 1):215–24. https://doi.org/10.1113/jphysiol.1997.sp021852.
CAS
Article
PubMed
PubMed Central
Google Scholar
van Drongelen J, Hooijmans CR, Lotgering FK, Smits P, Spaanderman ME. Adaptive changes of mesenteric arteries in pregnancy: a meta-analysis. Am J Physiol Heart Circ Physiol. 2012;303(6):H639–57. https://doi.org/10.1152/ajpheart.00617.2011.
CAS
Article
PubMed
Google Scholar
Clapp JF 3rd, Stepanchak W, Tomaselli J, Kortan M, Faneslow S. Portal vein blood flow-effects of pregnancy, gravity, and exercise. Am J Obstet Gynecol. 2000;183(1):167–72. https://doi.org/10.1067/mob.2000.105902.
Article
PubMed
Google Scholar
Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2016;71(7):876–81. https://doi.org/10.1093/gerona/glw064.
CAS
Article
PubMed
PubMed Central
Google Scholar
Norton MT, Fortner KA, Bizargity P, Bonney EA. Pregnancy alters the proliferation and apoptosis of mouse splenic erythroid lineage cells and leukocytes. Biol Reprod. 2009;81(3):457–64. https://doi.org/10.1095/biolreprod.109.076976.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res. 2012;5(3):264–73. https://doi.org/10.1007/s12265-012-9349-8.
Article
PubMed
PubMed Central
Google Scholar
Davidge ST, McLaughlin MK. Endogenous modulation of the blunted adrenergic response in resistance-sized mesenteric arteries from the pregnant rat. Am J Obstet Gynecol. 1992;167(6):1691–8. https://doi.org/10.1016/0002-9378(92)91763-z.
CAS
Article
PubMed
Google Scholar
Cockell AP, Poston L. Isolated mesenteric arteries from pregnant rats show enhanced flow-mediated relaxation but normal myogenic tone. J Physiol. 1996;495(Pt 2):545–51. https://doi.org/10.1113/jphysiol.1996.sp021614.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cooke CL, Davidge ST. Pregnancy-induced alterations of vascular function in mouse mesenteric and uterine arteries. Biol Reprod. 2003;68(3):1072–7. https://doi.org/10.1095/biolreprod.102.009886.
CAS
Article
PubMed
Google Scholar
Gokina NI, Goecks T. Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries. Am J Physiol Heart Circ Physiol. 2006;290(5):H2124–35. https://doi.org/10.1152/ajpheart.00813.2005.
CAS
Article
PubMed
Google Scholar
Hermsteiner M, Zoltan DR, Kunzel W. The vasoconstrictor response of uterine and mesenteric resistance arteries is differentially altered in the course of pregnancy. Eur J Obstet Gynecol Reprod Biol. 2001;100(1):29–35. https://doi.org/10.1016/s0301-2115(01)00428-6.
CAS
Article
PubMed
Google Scholar
Iacobaeus C, Andolf E, Thorsell M, Bremme K, Jorneskog G, Ostlund E, et al. Longitudinal study of vascular structure and function during normal pregnancy. Ultrasound Obstet Gynecol. 2017;49(1):46–53. https://doi.org/10.1002/uog.17326.
CAS
Article
PubMed
Google Scholar
Learmont JG, Cockell AP, Knock GA, Poston L. Myogenic and flow-mediated responses in isolated mesenteric small arteries from pregnant and nonpregnant rats. Am J Obstet Gynecol. 1996;174(5):1631–6. https://doi.org/10.1016/s0002-9378(96)70620-8.
CAS
Article
PubMed
Google Scholar
Marshall SA, Leo CH, Senadheera SN, Girling JE, Tare M, Parry LJ. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am J Phys Regul Integr Comp Phys. 2016;310(9):R847–57. https://doi.org/10.1152/ajpregu.00506.2015.
Article
Google Scholar
Stanley JL, Cheung CC, Rueda-Clausen CF, Sankaralingam S, Baker PN, Davidge ST. Effect of gestational diabetes on maternal artery function. Reprod Sci. 2011;18(4):342–52. https://doi.org/10.1177/1933719110393029.
CAS
Article
PubMed
Google Scholar
Gerber RT, Anwar MA, Poston L. Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF). Br J Pharmacol. 1998;125(3):455–60. https://doi.org/10.1038/sj.bjp.0702099.
CAS
Article
PubMed
PubMed Central
Google Scholar
D'Angelo G, Osol G. Regional variation in resistance artery diameter responses to alpha-adrenergic stimulation during pregnancy. Am J Phys. 1993;264(1 Pt 2):H78–85. https://doi.org/10.1152/ajpheart.1993.264.1.H78.
CAS
Article
Google Scholar
Mackey K, Meyer MC, Stirewalt WS, Starcher BC, McLaughlin MK. Composition and mechanics of mesenteric resistance arteries from pregnant rats. Am J Phys. 1992;263(1 Pt 2):R2–8. https://doi.org/10.1152/ajpregu.1992.263.1.R2.
CAS
Article
Google Scholar
Zhang Y, Stewart KG, Davidge ST. Endogenous estrogen mediates vascular reactivity and distensibility in pregnant rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2001;280(3):H956–61. https://doi.org/10.1152/ajpheart.2001.280.3.H956.
CAS
Article
PubMed
Google Scholar
Morris EA, Mandala M, Ko NL, Osol G. Postpartum persistence of maternal uterine vascular gestational adaptation in rodents. Reprod Sci. 2020;27(2):611–20. https://doi.org/10.1007/s43032-019-00062-z.
Article
PubMed
Google Scholar
Brennan L, Morton JS, Quon A, Davidge ST. Postpartum vascular dysfunction in the reduced uteroplacental perfusion model of preeclampsia. PLoS One. 2016;11(9):e0162487. https://doi.org/10.1371/journal.pone.0162487.
CAS
Article
PubMed
PubMed Central
Google Scholar
Paller MS. Mechanism of decreased pressor responsiveness to ANG II, NE, and vasopressin in pregnant rats. Am J Phys. 1984;247(1 Pt 2):H100–8. https://doi.org/10.1152/ajpheart.1984.247.1.H100.
CAS
Article
Google Scholar
Mackanjee HR, Shaul PW, Magness RR, Rosenfeld CR. Angiotensin II vascular smooth-muscle receptors are not down-regulated in near-term pregnant sheep. Am J Obstet Gynecol. 1991;165(6 Pt 1):1641–8. https://doi.org/10.1016/0002-9378(91)90008-f.
CAS
Article
PubMed
Google Scholar
Massicotte G, St-Louis J, Parent A, Schiffrin EL. Decreased in vitro responses to vasoconstrictors during gestation in normotensive and spontaneously hypertensive rats. Can J Physiol Pharmacol. 1987;65(12):2466–71. https://doi.org/10.1139/y87-391.
CAS
Article
PubMed
Google Scholar
Wong AY, Kulandavelu S, Whiteley KJ, Qu D, Langille BL, Adamson SL. Maternal cardiovascular changes during pregnancy and postpartum in mice. Am J Physiol Heart Circ Physiol. 2002;282(3):H918–25. https://doi.org/10.1152/ajpheart.00641.2001.
CAS
Article
PubMed
Google Scholar
Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch. 2010;459(6):807–16. https://doi.org/10.1007/s00424-009-0765-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda). 2014;29(5):343–60. https://doi.org/10.1152/physiol.00009.2014.
CAS
Article
Google Scholar
Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Phys. 1997;272(2 Pt 2):R441–63. https://doi.org/10.1152/ajpregu.1997.272.2.R441.
CAS
Article
Google Scholar
Sutton EF, Gemmel M, Powers RW. Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide. 2020;95:55–62. https://doi.org/10.1016/j.niox.2019.11.006.
CAS
Article
PubMed
Google Scholar
Magness RR, Osei-Boaten K, Mitchell MD, Rosenfeld CR. In vitro prostacyclin production by ovine uterine and systemic arteries. Effects of angiotensin II. J Clin Invest. 1985;76(6):2206–12. https://doi.org/10.1172/JCI112229.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nausch LW, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol. 2012;302(3):H594–602. https://doi.org/10.1152/ajpheart.00773.2011.
CAS
Article
PubMed
Google Scholar
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev. 2016;68(2):476–532. https://doi.org/10.1124/pr.115.010652.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (transient receptor potential Vanilloid 4) channel-dependent negative feedback mechanism regulates Gq protein-coupled receptor-induced vasoconstriction. Arterioscler Thromb Vasc Biol. 2018;38(3):542–54. https://doi.org/10.1161/ATVBAHA.117.310038.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzalez JM, Briones AM, Starcher B, Conde MV, Somoza B, Daly C, et al. Influence of elastin on rat small artery mechanical properties. Exp Physiol. 2005;90(4):463–8. https://doi.org/10.1113/expphysiol.2005.030056.
CAS
Article
PubMed
Google Scholar
Dai X, Shen J, Annam NP, Jiang H, Levi E, Schworer CM, et al. SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model. Sci Rep. 2015;5:10180. https://doi.org/10.1038/srep10180.
CAS
Article
PubMed
PubMed Central
Google Scholar
Steppan J, Bergman Y, Viegas K, Armstrong D, Tan S, Wang H, et al. Tissue transglutaminase modulates vascular stiffness and function through crosslinking-dependent and crosslinking-independent functions. J Am Heart Assoc. 2017;6(2). https://doi.org/10.1161/JAHA.116.004161.
Chan KLS, Khankhel AH, Thompson RL, Coisman BJ, Wong KHK, Truslow JG, et al. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J Biomed Mater Res A. 2014;102(9):3186–95. https://doi.org/10.1002/jbm.a.34990.
CAS
Article
PubMed
Google Scholar
Nallasamy S, Mahendroo M. Distinct roles of cervical epithelia and stroma in pregnancy and parturition. Semin Reprod Med. 2017;35(2):190–200. https://doi.org/10.1055/s-0037-1599091.
Article
PubMed
Google Scholar
Tulis DA, Unthank JL, Prewitt RL. Flow-induced arterial remodeling in rat mesenteric vasculature. Am J Phys. 1998;274(3):H874–82. https://doi.org/10.1152/ajpheart.1998.274.3.H874.
CAS
Article
Google Scholar
Dumont O, Loufrani L, Henrion D. Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol. 2007;27(2):317–24. https://doi.org/10.1161/01.ATV.0000254684.80662.44.
CAS
Article
PubMed
Google Scholar
Souza-Smith FM, Katz PS, Trask AJ, Stewart JA Jr, Lord KC, Varner KJ, et al. Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling. PLoS One. 2011;6(8):e23337. https://doi.org/10.1371/journal.pone.0023337.
CAS
Article
PubMed
PubMed Central
Google Scholar
Georgiopoulos G, Lambrinoudaki I, Athanasouli F, Armeni E, Koliviras A, Augoulea A, et al. Prolactin as a predictor of endothelial dysfunction and arterial stiffness progression in menopause. J Hum Hypertens. 2017;31(8):520–4. https://doi.org/10.1038/jhh.2017.15.
CAS
Article
PubMed
Google Scholar
Wang P, Wang SC, Yang H, Lv C, Jia S, Liu X, et al. Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: mechanisms and signaling pathways. Front Neurosci. 2019;13:454. https://doi.org/10.3389/fnins.2019.00454.
Article
PubMed
PubMed Central
Google Scholar
Countouris ME, Schwarz EB, Rossiter BC, Althouse AD, Berlacher KL, Jeyabalan A, et al. Effects of lactation on postpartum blood pressure among women with gestational hypertension and preeclampsia. Am J Obstet Gynecol. 2016;215(2):241 e1–8. https://doi.org/10.1016/j.ajog.2016.02.046.
Article
Google Scholar