Skip to main content
Log in

Curbing Obesity from One Generation to Another: the Effects of Bariatric Surgery on the In Utero Environment and Beyond

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Approximately 250,000 individuals seek bariatric surgery each year in the USA for the long-term resolution of obesity-related comorbidities. Greater than 80% of these individuals are women and approximately half are of child-bearing age. Although there are many positive metabolic benefits that are realized through surgical weight loss for both men and women, the various long-term hormonal, molecular, nutrient, and epigenetic changes following bariatric surgery have not been evaluated for the surgical recipient or in the context of pregnancy and the offspring. Pregnancy may be a vulnerable period of time for the bariatric surgery recipient, and thoughtful consideration of pregnancy management should be taken by health care providers and recipients alike. The purpose of this review is to explore potential etiologies of some of the gestation-specific outcomes for the mother and offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Collaborators GBDO, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.

    Google Scholar 

  2. Riley L, Wertz M, McDowell I. Obesity in pregnancy: risks and management. Am Fam Physician. 2018;97(9):559–61.

    PubMed  Google Scholar 

  3. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356:j1.

    PubMed  PubMed Central  Google Scholar 

  4. Burstein E, Levy A, Mazor M, Wiznitzer A, Sheiner E. Pregnancy outcome among obese women: a prospective study. Am J Perinatol. 2008;25(9):561–6.

    PubMed  Google Scholar 

  5. Willis K, Lieberman N, Sheiner E. Pregnancy and neonatal outcome after bariatric surgery. Best Pract Res Clin Obstet Gynaecol. 2015;29(1):133–44.

    PubMed  Google Scholar 

  6. Santoro N, Lasley B, McConnell D, Allsworth J, Crawford S, Gold EB, et al. Body size and ethnicity are associated with menstrual cycle alterations in women in the early menopausal transition: the Study of Women’s Health across the Nation (SWAN) Daily Hormone Study. J Clin Endocrinol Metab. 2004;89(6):2622–31.

    CAS  PubMed  Google Scholar 

  7. Teitelman M, Grotegut C, Williams N, Lewis J. The impact of bariatric surgery on menstrual patterns. Obes Surg. 2006;16(11):1457–63.

    PubMed  Google Scholar 

  8. Yessoufou A, Moutairou K. Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of “metabolic memory”. Exp Diabetes Res. 2011;2011:218598.

    PubMed  PubMed Central  Google Scholar 

  9. Madan J, Chen M, Goodman E, Davis J, Allan W, Dammann O. Maternal obesity, gestational hypertension, and preterm delivery. J Matern Fetal Neonatal Med. 2010;23(1):82–8.

    PubMed  Google Scholar 

  10. Lopez-Jaramillo P, et al. Obesity and preeclampsia: common pathophysiological mechanisms. Front Physiol. 2018;9:1838.

    PubMed  PubMed Central  Google Scholar 

  11. Deshmukh VL, Jadhav M, Yelikar K. Impact of HIGH BMI on pregnancy: maternal and foetal outcome. J Obstet Gynaecol India. 2016;66(1):192–7.

    PubMed  PubMed Central  Google Scholar 

  12. Fernández Alba JJ, Paublete Herrera C, Vilar Sanchez A, Gonzalez-Macias C, Castillo Lara M, Torrejón R, et al. Indications of caesarean section in overweight and obese versus normal-weight pregnant women: a retrospective cohort study. J Matern Fetal Neonatal Med. 2018;31(3):357–63.

    PubMed  Google Scholar 

  13. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    PubMed  PubMed Central  Google Scholar 

  14. Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology. 2007;132(6):2253–71.

    PubMed  Google Scholar 

  15. Angrisani L, Santonicola A, Iovino P, Vitiello A, Higa K, Himpens J, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.

    PubMed  Google Scholar 

  16. Young MT, Phelan MJ, Nguyen NT. A decade analysis of trends and outcomes of male vs female patients who underwent bariatric surgery. J Am Coll Surg. 2016;222(3):226–31.

    PubMed  Google Scholar 

  17. Maggard MA, Yermilov I, Li Z, Maglione M, Newberry S, Suttorp M, et al. Pregnancy and fertility following bariatric surgery: a systematic review. JAMA. 2008;300(19):2286–96.

    CAS  PubMed  Google Scholar 

  18. American College of O. and Gynecologists. ACOG practice bulletin no. 105: bariatric surgery and pregnancy. Obstet Gynecol. 2009;113(6):1405–13.

    Google Scholar 

  19. Parent B, Martopullo I, Weiss NS, Khandelwal S, Fay EE, Rowhani-Rahbar A. Bariatric surgery in women of childbearing age, timing between an operation and birth, and associated perinatal complications. JAMA Surg. 2017;152(2):128–35.

    PubMed  Google Scholar 

  20. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36.

    PubMed  Google Scholar 

  21. Angrisani L, et al. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. Obes Surg. 2017;27(9):2279–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dogan K, Gadiot RPM, Aarts EO, Betzel B, van Laarhoven CJHM, Biter LU, et al. Effectiveness and safety of sleeve gastrectomy, gastric bypass, and adjustable gastric banding in morbidly obese patients: a multicenter, retrospective, Matched Cohort Study. Obes Surg. 2015;25(7):1110–8.

    PubMed  Google Scholar 

  23. Anderson B, et al. Biliopancreatic diversion: the effectiveness of duodenal switch and its limitations. Gastroenterol Res Pract. 2013;2013:974762.

    PubMed  PubMed Central  Google Scholar 

  24. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    CAS  PubMed  Google Scholar 

  25. Arterburn D, Gupta A. Comparing the outcomes of sleeve gastrectomy and Roux-en-Y gastric bypass for severe obesity. JAMA. 2018;319(3):235–7.

    PubMed  Google Scholar 

  26. Pournaras DJ, Aasheim ET, Søvik TT, Andrews R, Mahon D, Welbourn R, et al. Effect of the definition of type II diabetes remission in the evaluation of bariatric surgery for metabolic disorders. Br J Surg. 2012;99(1):100–3.

    CAS  PubMed  Google Scholar 

  27. Grayson BE, et al. Improved rodent maternal metabolism but reduced intrauterine growth after vertical sleeve gastrectomy. Sci Transl Med. 2013;5(199):199ra112.

    PubMed  PubMed Central  Google Scholar 

  28. Ressler IB, Grayson BE, Seeley RJ. Metabolic, behavioral, and reproductive effects of vertical sleeve gastrectomy in an obese rat model of polycystic ovary syndrome. Obes Surg. 2014;24(6):866–76.

    PubMed  PubMed Central  Google Scholar 

  29. Grayson BE, Gutierrez-Aguilar R, Sorrell JE, Matter EK, Adams MR, Howles P, et al. Bariatric surgery emphasizes biological sex differences in rodent hepatic lipid handling. Biol Sex Differ. 2017;8:4.

    PubMed  PubMed Central  Google Scholar 

  30. Stefater M, et al. Sleeve Gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138(7):2426–36 e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stefater MA, et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology. 2011;41(3):939–949.e4.

    Google Scholar 

  32. Chambers AP, Jessen L, Ryan KK, Sisley S, Wilson-Pérez HE, Stefater MA, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deitel M, Stone E, Kassam HA, Wilk EJ, Sutherland DJ. Gynecologic-obstetric changes after loss of massive excess weight following bariatric surgery. J Am Coll Nutr. 1988;7(2):147–53.

    CAS  PubMed  Google Scholar 

  34. Marceau P, Kaufman D, Biron S, Hould FS, Lebel S, Marceau S, et al. Outcome of pregnancies after biliopancreatic diversion. Obes Surg. 2004;14(3):318–24.

    PubMed  Google Scholar 

  35. Gosman GG, King WC, Schrope B, Steffen KJ, Strain GW, Courcoulas AP, et al. Reproductive health of women electing bariatric surgery. Fertil Steril. 2010;94(4):1426–31.

    PubMed  Google Scholar 

  36. Pasquali R. Metabolic syndrome in polycystic ovary syndrome. Front Horm Res. 2018;49:114–30.

    CAS  PubMed  Google Scholar 

  37. Legro RS, Schlaff WD, Diamond MP, Coutifaris C, Casson PR, Brzyski RG, et al. Total testosterone assays in women with polycystic ovary syndrome: precision and correlation with hirsutism. J Clin Endocrinol Metab. 2010;95(12):5305–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mayer SB, Evans WS, Nestler JE. Polycystic ovary syndrome and insulin: our understanding in the past, present and future. Womens Health (Lond). 2015;11(2):137–49.

    CAS  Google Scholar 

  39. Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83(6):2001–5.

    CAS  PubMed  Google Scholar 

  40. Pasquali R, Gambineri A, Cavazza C, Ibarra Gasparini D, Ciampaglia W, Cognigni GE, et al. Heterogeneity in the responsiveness to long-term lifestyle intervention and predictability in obese women with polycystic ovary syndrome. Eur J Endocrinol. 2011;164(1):53–60.

    CAS  PubMed  Google Scholar 

  41. Skubleny D, Switzer NJ, Gill RS, Dykstra M, Shi X, Sagle MA, et al. The impact of bariatric surgery on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Surg. 2016;26(1):169–76.

    PubMed  Google Scholar 

  42. Li YJ, Han Y, He B. Effects of bariatric surgery on obese polycystic ovary syndrome: a systematic review and meta-analysis. Surg Obes Relat Dis. 2019;15(6):942–50.

    PubMed  Google Scholar 

  43. Machado Junior AS, et al. The effect of sleeve gastrectomy on the hormonal profile of patients with polycystic ovary syndrome. Obes Surg. 2019;29(8):2415–9.

    PubMed  Google Scholar 

  44. Dilday J, Derickson M, Kuckelman J, Reitz C, Ahnfeldt E, Martin M, et al. Sleeve gastrectomy for obesity in polycystic ovarian syndrome: a pilot study evaluating weight loss and fertility outcomes. Obes Surg. 2019;29(1):93–8.

    PubMed  Google Scholar 

  45. Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(4):439–51.

    CAS  PubMed  Google Scholar 

  46. Luke B, Brown MB, Stern JE, Missmer SA, Fujimoto VY, Leach R, et al. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod. 2011;26(1):245–52.

    PubMed  Google Scholar 

  47. Doblado MA, Lewkowksi BM, Odem RR, Jungheim ES. In vitro fertilization after bariatric surgery. Fertil Steril. 2010;94(7):2812–4.

    PubMed  PubMed Central  Google Scholar 

  48. Tan O, Carr BR. The impact of bariatric surgery on obesity-related infertility and in vitro fertilization outcomes. Semin Reprod Med. 2012;30(6):517–28.

    PubMed  Google Scholar 

  49. Milone M, Sosa Fernandez LM, Sosa Fernandez LV, Manigrasso M, Elmore U, de Palma GD, et al. Does bariatric surgery improve assisted reproductive technology outcomes in obese infertile women? Obes Surg. 2017;27(8):2106–12.

    PubMed  Google Scholar 

  50. Committee on Practice, B.-O. ACOG Practice Bulletin No. 190: gestational diabetes mellitus. Obstet Gynecol. 2018;131(2):e49–64.

    Google Scholar 

  51. Plows JF, et al. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342.

    PubMed Central  Google Scholar 

  52. Aerts L, Holemans K, Van Assche FA. Maternal diabetes during pregnancy: consequences for the offspring. Diabetes Metab Rev. 1990;6(3):147–67.

    CAS  PubMed  Google Scholar 

  53. Lopez-Soldado I, Herrera E. Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring. ExpDiabesity Res. 2003;4(2):107–18.

    Google Scholar 

  54. Bennett WL, Gilson MM, Jamshidi R, Burke AE, Segal JB, Steele KE, et al. Impact of bariatric surgery on hypertensive disorders in pregnancy: retrospective analysis of insurance claims data. BMJ. 2010;340:c1662.

    PubMed  PubMed Central  Google Scholar 

  55. Rottenstreich A, Elchalal U, Kleinstern G, Beglaibter N, Khalaileh A, Elazary R. Maternal and perinatal outcomes after laparoscopic sleeve gastrectomy. Obstet Gynecol. 2018;131(3):451–6.

    PubMed  Google Scholar 

  56. Ibiebele I, et al. Perinatal outcomes following bariatric surgery between a first and second pregnancy: a population data linkage study. Bjog. 2020;127(3):345–54.

    CAS  PubMed  Google Scholar 

  57. Lesko J, Peaceman A. Pregnancy outcomes in women after bariatric surgery compared with obese and morbidly obese controls. Obstet Gynecol. 2012;119(3):547–54.

    PubMed  Google Scholar 

  58. de Alencar Costa LA, Araujo Júnior E, de Lucena Feitosa FE, Dos Santos AC, Moura Júnior LG, Costa Carvalho FH. Maternal and perinatal outcomes after bariatric surgery: a case control study. J Perinat Med. 2016;44(4):383–8.

    PubMed  Google Scholar 

  59. Kjaer MM, Nilas L. Pregnancy after bariatric surgery–a review of benefits and risks. Acta Obstet Gynecol Scand. 2013;92(3):264–71.

    PubMed  Google Scholar 

  60. ACOG. Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019;133(1):e1–25.

    Google Scholar 

  61. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112.

    CAS  PubMed  Google Scholar 

  62. American College of O. and B.-O. Gynecologists’ Committee on Practice, Practice Bulletin No. 173: fetal macrosomia. Obstet Gynecol. 2016;128(5):e195–209.

    Google Scholar 

  63. Belogolovkin V, Salihu HM, Weldeselasse H, Biroscak BJ, August EM, Mbah AK, et al. Impact of prior bariatric surgery on maternal and fetal outcomes among obese and non-obese mothers. Arch Gynecol Obstet. 2012;285(5):1211–8.

    PubMed  Google Scholar 

  64. Patel JA, Patel NA, Thomas RL, Nelms JK, Colella JJ. Pregnancy outcomes after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2008;4(1):39–45.

    PubMed  Google Scholar 

  65. Weintraub AY, Levy A, Levi I, Mazor M, Wiznitzer A, Sheiner E. Effect of bariatric surgery on pregnancy outcome. Int J Gynaecol Obstet. 2008;103(3):246–51.

    PubMed  Google Scholar 

  66. Sheiner E, Levy A, Silverberg D, Menes TS, Levy I, Katz M, et al. Pregnancy after bariatric surgery is not associated with adverse perinatal outcome. Am J Obstet Gynecol. 2004;190(5):1335–40.

    PubMed  Google Scholar 

  67. Boots CE, Bernardi LA, Stephenson MD. Frequency of euploid miscarriage is increased in obesewomen with recurrent early pregnancy loss. Fertil Steril. 2014;102(2):455–9.

    PubMed  Google Scholar 

  68. Bellver J, Rossal LP, Bosch E, Zúñiga A, Corona JT, Meléndez F, et al. Obesity and the risk of spontaneous abortion after oocyte donation. Fertil Steril. 2003;79(5):1136–40.

    PubMed  Google Scholar 

  69. Fedorcsak P, et al. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod. 2004;19(11):2523–8.

    PubMed  Google Scholar 

  70. Goldman RH, Missmer SA, Robinson MK, Farland LV, Ginsburg ES. Reproductive outcomes differ following Roux-en-Y gastric bypass and adjustable gastric band compared with those of an obese non-surgical group. Obes Surg. 2016;26(11):2581–9.

    PubMed  Google Scholar 

  71. Akhter Z, Rankin J, Ceulemans D, Ngongalah L, Ackroyd R, Devlieger R, et al. Pregnancy after bariatric surgery and adverse perinatal outcomes: a systematic review and meta-analysis. PLoS Med. 2019;16(8):e1002866.

    PubMed  PubMed Central  Google Scholar 

  72. Cnattingius S, Villamor E, Johansson S, Bonamy AKE, Persson M, Wikström AK, et al. Maternal obesity and risk of preterm delivery. JAMA. 2013;309(22):2362–70.

    CAS  PubMed  Google Scholar 

  73. Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16(8):621–38.

    CAS  PubMed  Google Scholar 

  74. Simmons LE, Rubens CE, Darmstadt GL, Gravett MG. Preventing preterm birth and neonatal mortality: exploring the epidemiology, causes, and interventions. Semin Perinatol. 2010;34(6):408–15.

    PubMed  Google Scholar 

  75. Roos N, Neovius M, Cnattingius S, Trolle Lagerros Y, Saaf M, Granath F, et al. Perinatal outcomes after bariatric surgery: nationwide population based matched cohort study. Bmj. 2013;347:f6460.

    PubMed  PubMed Central  Google Scholar 

  76. Chevrot A, et al. Impact of bariatric surgery on fetal growth restriction: experience of a perinatal and bariatric surgery center. Am J Obstet Gynecol. 2016;214(5):655.e1–7.

    Google Scholar 

  77. Dixon JB. DixonME, O'Brien PE. Birth outcomes in obese women after laparoscopic adjustable gastric banding. Obstet Gynecol. 2005;106(5 Pt 1):965–72.

    PubMed  Google Scholar 

  78. Josefsson A, et al. Bariatric surgery in a national cohort of women: sociodemographics and obstetric outcomes. Am J Obstet Gynecol. 2011;205(3):206.e1–8.

    Google Scholar 

  79. Lapolla A, Marangon M, Dalfrà MG, Segato G, de Luca M, Fedele D, et al. Pregnancy outcome in morbidly obese women before and after laparoscopic gastric banding. Obes Surg. 2010;20(9):1251–7.

    PubMed  Google Scholar 

  80. Burke AE, Bennett WL, Jamshidi RM, Gilson MM, Clark JM, Segal JB, et al. Reduced incidence of gestational diabetes with bariatric surgery. J Am Coll Surg. 2010;211(2):169–75.

    PubMed  Google Scholar 

  81. ACOG. Practice Bulletin No. 204: fetal growth restriction. Obstet Gynecol. 2019;133(2):e97–e109.

    Google Scholar 

  82. Kjaer MM, Nilas L. Timing of pregnancy after gastric bypass-a national register-based cohort study. Obes Surg. 2013;23(8):1281–5.

    PubMed  Google Scholar 

  83. Santulli P, Mandelbrot L, Facchiano E, Dussaux C, Ceccaldi PF, Ledoux S, et al. Obstetrical and neonatal outcomes of pregnancies following gastric bypass surgery: a retrospective cohort study in a French referral centre. Obes Surg. 2010;20(11):1501–8.

    PubMed  Google Scholar 

  84. Ciangura C, et al. Clinical practice guidelines for childbearing female candidates for bariatric surgery, pregnancy, and postpartum management after bariatric surgery. Obes Surg. 2019;29(11):3722–34.

    PubMed  Google Scholar 

  85. Busetto L, Dicker D, Azran C, Batterham RL, Farpour-Lambert N, Fried M, et al. Obesity Management Task Force of the European Association for the Study of Obesity released “Practical recommendations for the post-bariatric surgery medical management”. Obes Surg. 2018;28(7):2117–21.

    PubMed  Google Scholar 

  86. Dolin CD, et al. Association between time interval from bariatric surgery to pregnancy and maternal weight outcomes. J Matern Fetal Neonatal Med. 2019:1–7.

  87. Basbug A, et al. Does pregnancy interval after laparoscopic sleeve gastrectomy affect maternal and perinatal outcomes? J Matern Fetal Neonatal Med. 2018;32:1–7.

    Google Scholar 

  88. Forbes R, et al. Essential Fatty Acid Plasma Profiles Following Gastric Bypass and Adjusted Gastric Banding Bariatric Surgeries. Obes Surg. 2016;26(6):1237–46.

    PubMed  Google Scholar 

  89. Coluzzi I, Raparelli L, Guarnacci L, Paone E, del Genio G, le Roux CW, et al. Food intake and changes in eating behavior after laparoscopic sleeve gastrectomy. Obes Surg. 2016;26:2059–67.

    PubMed  Google Scholar 

  90. Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG, et al. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg. 2014;24(5):796–805.

    PubMed  Google Scholar 

  91. Aron-Wisnewsky J, Verger EO, Bounaix C, Dao MC, Oppert JM, Bouillot JL, et al. Nutritional and protein deficiencies in the short term following both gastric bypass and gastric banding. PLoS One. 2016;11(2):e0149588.

    PubMed  PubMed Central  Google Scholar 

  92. Martins Tde C, et al. Severe protein malnutrition in a morbidly obese patient after bariatric surgery. Nutrition. 2015;31(3):535–8.

    PubMed  Google Scholar 

  93. Nicoletti CF, et al. Protein and amino acid status before and after bariatric surgery: a 12-month follow-up study. Surg Obes Relat Dis. 2013;9(6):1008–12.

    PubMed  Google Scholar 

  94. Reamon-Buettner SM, Buschmann J, Lewin G. Identifying placental epigenetic alterations in an intrauterine growth restriction (IUGR) rat model induced by gestational protein deficiency. Reprod Toxicol. 2014;45:117–24.

    CAS  PubMed  Google Scholar 

  95. Love AL, Billett HH. Obesity, bariatric surgery, and iron deficiency: true, true, true and related. Am J Hematol. 2008;83(5):403–9.

    PubMed  Google Scholar 

  96. Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, et al. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: systematic review and meta-analysis. Am J Clin Nutr. 2016;103(2):495–504.

    CAS  PubMed  Google Scholar 

  97. Mead NC, Sakkatos P, Sakellaropoulos GC, Adonakis GL, Alexandrides TK, Kalfarentzos F. Pregnancy outcomes and nutritional indices after 3 types of bariatric surgery performed at a single institution. Surg Obes Relat Dis. 2014;10(6):1166–73.

    PubMed  Google Scholar 

  98. Shai D, Shoham-Vardi I, Amsalem D, Silverberg D, Levi I, Sheiner E. Pregnancy outcome of patients following bariatric surgery as compared with obese women: a population-based study. J Matern Fetal Neonatal Med. 2014;27(3):275–8.

    PubMed  Google Scholar 

  99. Galazis N, Docheva N, Simillis C, Nicolaides KH. Maternal and neonatal outcomes in women undergoing bariatric surgery: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;181:45–53.

    PubMed  Google Scholar 

  100. Devlieger R, Guelinckx I, Jans G, Voets W, Vanholsbeke C, Vansant G. Micronutrient levels and supplement intake in pregnancy after bariatric surgery: a prospective cohort study. PLoS One. 2014;9(12):e114192.

    PubMed  PubMed Central  Google Scholar 

  101. Jans G, Guelinckx I, Voets W, Galjaard S, van Haard PMM, Vansant GM, et al. Vitamin K1 monitoring in pregnancies after bariatric surgery: a prospective cohort study. Surg Obes Relat Dis. 2014;10(5):885–90.

    PubMed  Google Scholar 

  102. Rottenstreich A, Elazary R, Goldenshluger A, Pikarsky AJ, Elchalal U, Ben-Porat T. Maternal nutritional status and related pregnancy outcomes following bariatric surgery: a systematic review. Surg Obes Relat Dis. 2019;15(2):324–32.

    PubMed  Google Scholar 

  103. Faintuch J, Dias MC, de Souza FE, de Oliveira FC, Nomura RM, Zugaib M, et al. Pregnancy nutritional indices and birth weight after Roux-en-Y gastric bypass. Obes Surg. 2009;19(5):583–9.

    PubMed  Google Scholar 

  104. Pelizzo G, Calcaterra V, Fusillo M, Nakib G, Ierullo AM, Alfei A, et al. Malnutrition in pregnancy following bariatric surgery: three clinical cases of fetal neural defects. Nutr J. 2014;13:59.

    PubMed  PubMed Central  Google Scholar 

  105. Gadgil MD, Chang HY, Richards TM, Gudzune KA, Huizinga MM, Clark JM, et al. Laboratory testing for and diagnosis of nutritional deficiencies in pregnancy before and after bariatric surgery. J Women's Health (Larchmt). 2014;23(2):129–37.

    Google Scholar 

  106. Costa MM, Belo S, Souteiro P, Neves JS, Magalhães D, Silva RB, et al. Pregnancy after bariatric surgery: maternal and fetal outcomes of 39 pregnancies and a literature review. J Obstet Gynaecol Res. 2018;44(4):681–90.

    PubMed  Google Scholar 

  107. Chakhtoura MT, Nakhoul NN, Shawwa K, Mantzoros C, el Hajj Fuleihan GA. Hypovitaminosis D in bariatric surgery: a systematic review of observational studies. Metabolism. 2016;65(4):574–85.

    CAS  PubMed  Google Scholar 

  108. Daina A, Giuliano C, Pietra C, Wang J, Chi Y, Zou Z, et al. Rational design, synthesis, and pharmacological characterization of novel ghrelin receptor inverse agonists as potential treatment against obesity-related metabolic diseases. J Med Chem. 2018;61(24):11039–60.

    CAS  PubMed  Google Scholar 

  109. Helmling S, Jarosch F, Klussmann S. The promise of ghrelin antagonism in obesity treatment. Drug News Perspect. 2006;19(1):13–20.

    CAS  PubMed  Google Scholar 

  110. De Magalhaes Filho CD, Downes M, Evans RM. Farnesoid X receptor an emerging target to combat obesity. Dig Dis. 2017;35(3):185–90.

    PubMed  PubMed Central  Google Scholar 

  111. Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019;128:94–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Albaugh VL, et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology. 2019;156(4):1041–1051.e4.

    CAS  PubMed  Google Scholar 

  113. Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97(1):411–63.

    PubMed  Google Scholar 

  114. Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19(3):357–62.

    PubMed  Google Scholar 

  115. Frezza EE, Chiriva-Internati M, Wachtel MS. Analysis of the results of sleeve gastrectomy for morbid obesity and the role of ghrelin. Surg Today. 2008;38(6):481–3.

    CAS  PubMed  Google Scholar 

  116. Chambers AP, Kirchner H, Wilson-Perez HE, Willency JA, Hale JE, Gaylinn BD, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013;144(1):50–2 e5.

    CAS  PubMed  Google Scholar 

  117. Nakahara K, Nakagawa M, Baba Y, Sato M, Toshinai K, Date Y, et al. Maternal ghrelin plays an important role in rat fetal development during pregnancy. Endocrinology. 2006;147(3):1333–42.

    CAS  PubMed  Google Scholar 

  118. Yalinbas EE, et al. The Role of Umbilical Cord Blood Concentration of IGF-I, IGF-II, Leptin, Adiponectin, Ghrelin, Resistin, and Visfatin in Fetal Growth. Am J Perinatol. 2019;36(6):600–8.

    PubMed  Google Scholar 

  119. Warchol M, et al. Association of cord blood ghrelin, leptin and insulin concentrations in term newborns with anthropometric parameters at birth. J Pediatr Endocrinol Metab. 2018;31(2):151–7.

    CAS  PubMed  Google Scholar 

  120. Spinelli V, Lalloyer F, Baud G, Osto E, Kouach M, Daoudi M, et al. Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. Int J Obes. 2016;40:1260–7.

    CAS  Google Scholar 

  121. Myronovych A, et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity (Silver Spring). 2014;22(2):390–400.

    CAS  Google Scholar 

  122. Myronovych A, Salazar-Gonzalez RM, Ryan KK, Miles L, Zhang W, Jha P, et al. The role of small heterodimer partner in nonalcoholic fatty liver disease improvement after sleeve gastrectomy in mice. Obesity (Silver Spring). 2014;22(11):2301–11.

    CAS  Google Scholar 

  123. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dixon PH, Williamson C. The pathophysiology of intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol. 2016;40(2):141–53.

    CAS  PubMed  Google Scholar 

  125. Glantz A, Marschall HU, Lammert F, Mattsson LÅ. Intrahepatic cholestasis of pregnancy: a randomized controlled trial comparing dexamethasone and ursodeoxycholic acid. Hepatology. 2005;42(6):1399–405.

    CAS  PubMed  Google Scholar 

  126. Wikstrom Shemer E, et al. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study. BJOG. 2013;120(6):717–23.

    CAS  PubMed  Google Scholar 

  127. Spann RA, Lawson WJ, Bidwell GL III, Zamarripa CA, Maranon RO, Bandyopadhyay S, et al. Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development. Clin Sci (Lond). 2018;132(2):295–312.

    CAS  Google Scholar 

  128. Kosinski M, et al. Postpartum reversibility of impaired incretin effect in gestational diabetes mellitus. Regul Pept. 2013;186C:104–7.

    Google Scholar 

  129. Lencioni C, Resi V, Romero F, Lupi R, Volpe L, Bertolotto A, et al. Glucagon-like peptide-1 secretion in women with gestational diabetes mellitus during and after pregnancy. J Endocrinol Investig. 2011;34(9):e287–90.

    CAS  Google Scholar 

  130. Bonde L, Vilsbøll T, Nielsen T, Bagger JI, Svare JA, Holst JJ, et al. Reduced postprandial GLP-1 responses in women with gestational diabetes mellitus. Diabetes Obes Metab. 2013;15(8):713–20.

    CAS  PubMed  Google Scholar 

  131. Valsamakis G, Margeli A, Vitoratos N, Boutsiadis A, Sakkas EG, Papadimitriou G, et al. The role of maternal gut hormones in normal pregnancy: fasting plasma active glucagon-like peptide 1 level is a negative predictor of fetal abdomen circumference and maternal weight change. Eur J Endocrinol. 2010;162(5):897–903.

    CAS  PubMed  Google Scholar 

  132. Chambers AP, Smith EP, Begg DP, Grayson BE, Sisley S, Greer T, et al. Regulation of gastric emptying rate and its role in nutrient induced GLP-1 secretion in rats after vertical sleeve gastrectomy. Am J Physiol Endocrinol Metab. 2014;306(4):E424–32.

    CAS  PubMed  Google Scholar 

  133. Spann RA, Taylor EB, Welch BA, Grayson BE. Altered immune system in offspring of rat maternal vertical sleeve gastrectomy. Am J Phys Regul Integr Comp Phys. 2019;317(6):R852–r863.

    CAS  Google Scholar 

  134. Guenard F, et al. Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J Obes. 2013;2013:492170.

    PubMed  PubMed Central  Google Scholar 

  135. Gimenes JC, Nicoletti CF, de Souza Pinhel MA, Cortes-Oliveira C, Salgado Júnior W, Nonino CB. Nutritional status of children from women with previously bariatric surgery. Obes Surg. 2018;28(4):990–5.

    PubMed  Google Scholar 

  136. Berglind D, Müller P, Willmer M, Sinha I, Tynelius P, Näslund E, et al. Differential methylation in inflammation and type 2 diabetes genes in siblings born before and after maternal bariatric surgery. Obesity (Silver Spring). 2016;24(1):250–61.

    CAS  Google Scholar 

  137. Willmer M, Berglind D, Sørensen TIA, Näslund E, Tynelius P, Rasmussen F. Surgically induced interpregnancy weight loss and prevalence of overweight and obesity in offspring. PLoS One. 2013;8(12):e82247.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

BEG has been supported by awards from the Office of the Assistant Secretary of Defense for Health Affairs supported by Award No. W81XWH-16-1-0349 and W81XWH-16-1-0387. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. BEG has also been supported through the Mississippi Center of Excellence in Perinatal Research COBRE P20GM121334. The content of the manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette E. Grayson.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethical Consents

As this is a review, ethical consents for this work has been previously obtained by authors of published materials. No new ethical consents are necessary.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spann, R.A., Grayson, B.E. Curbing Obesity from One Generation to Another: the Effects of Bariatric Surgery on the In Utero Environment and Beyond. Reprod. Sci. 27, 1821–1833 (2020). https://doi.org/10.1007/s43032-020-00221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00221-7

Keywords

Navigation