Skip to main content
Log in

BRD7-Mediated miR-3148 Inhibits Progression of Cervical Cancer by Targeting Wnt3a/β-Catenin Pathway

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Abnormal expression of miRNAs is closely related to the occurrence and development of tumors, and thus has become the most concerned biomolecule in the field of tumors. But so far, miRNAs that are truly recognized and studied for their function are only a small part, and their mechanism in tumors needs to be further studied. In this study, we identify that miR-3148 is downregulated in the development of cervical cancer. In cervical cancer cells, upregulated miR-3148 inhibits cell proliferation and promotes apoptosis, suggesting that miR-3148 acts as a tumor suppressor gene. Furthermore, we explored the mechanism of miR-3148 in cervical cancer cells from both transcriptional and post-transcriptional levels. Our research reveals that on the one hand, bromodomain containing 7 (BRD7) acts as a transcription factor to up-regulate the expression of miR-3148 at the transcriptional level; on the other hand, miR-3148 targets the 3′UTR of Wnt3a mRNA to inhibit Wnt3a expression at the post-transcriptional level, thereby suppressing Wnt3a/β-catenin signaling pathway and exerting its tumor suppressor role in cervical cancer. In conclusion, our study elucidates the mechanism of BRD7/miR-3148/Wnt3a/β-catenin pathway in cervical cancer and provides a new research direction for targeted therapy of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  Google Scholar 

  2. Goodman A. HPV testing as a screen for cervical cancer. BMJ. 2015;350:h2372.

    Article  Google Scholar 

  3. Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell. 2016;7(2):100–13.

    Article  CAS  Google Scholar 

  4. Deng R, Zhang K, Li J. Isothermal amplification for microRNA detection: from the test tube to the cell. Acc Chem Res. 2017;50(4):1059–68.

    Article  CAS  Google Scholar 

  5. Kontomanolis EN, Koukouli A, Liberis G, Stanulov H, Achouhan A, Pagkalos A. MiRNAs: regulators of human disease. Eur J Gynaecol Oncol. 2016;37(6):759–65.

    CAS  PubMed  Google Scholar 

  6. Tutar Y. miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol. 2014;15(5):429.

    Article  CAS  Google Scholar 

  7. Kappel A, Keller A. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med. 2017;55(5):636–47.

    Article  CAS  Google Scholar 

  8. Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12–23.

    Article  Google Scholar 

  9. Robb T, Reid G, Blenkiron C. Exploiting microRNAs as cancer therapeutics. Target Oncol. 2017;12(2):163–78.

    Article  Google Scholar 

  10. Akamine T, Morodomi Y, Harada Y, Teraishi K, Tagawa T, Okamoto T, et al. miR-3148 is a novel onco-microRNA that potentiates tumor growth in vivo. Anticancer Res. 2018;38(10):5693–701.

    Article  CAS  Google Scholar 

  11. Oger F, Gheeraert C, Mogilenko D, Benomar Y, Molendi-Coste O, Bouchaert E, et al. Cell-specific dysregulation of microRNA expression in obese white adipose tissue. J Clin Endocrinol Metab. 2014;99(8):2821–33.

    Article  CAS  Google Scholar 

  12. Li K, Ma YB, Zhang Z, Tian YH, Xu XL, He YQ, et al. Upregulated IQUB promotes cell proliferation and migration via activating Akt/GSK3beta/beta-catenin signaling pathway in breast cancer. Cancer Med. 2018;7(8):3875–88.

    Article  CAS  Google Scholar 

  13. Spassky N, Meunier A. The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol. 2017;18(7):423–36.

    Article  CAS  Google Scholar 

  14. Faurobert E, Bouin AP, Albiges-Rizo C. Microenvironment, tumor cell plasticity, and cancer. Curr Opin Oncol. 2015;27(1):64–70.

    Article  CAS  Google Scholar 

  15. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99.

    Article  CAS  Google Scholar 

  16. Majidinia M, Aghazadeh J, Jahanban-Esfahlani R, Yousefi B. The roles of Wnt/beta-catenin pathway in tissue development and regenerative medicine. J Cell Physiol. 2018;233(8):5598–612.

    Article  CAS  Google Scholar 

  17. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    Article  CAS  Google Scholar 

  18. Liu H, Zhang L, Niu Z, et al. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer. 2008;8:253.

    Article  CAS  Google Scholar 

  19. Yu X, Li Z, Shen J. BRD7: a novel tumor suppressor gene in different cancers. Am J Transl Res. 2016;8(2):742–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou M, Liu H, Xu X, Zhou H, Li X, Peng C, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem. 2006;98(4):920–30.

    Article  CAS  Google Scholar 

  21. Peng C, Zhou J, Liu HY, Zhou M, Wang LL, Zhang QH, et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem. 2006;97(4):882–92.

    Article  CAS  Google Scholar 

  22. Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C, et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem Biophys Res Commun. 2007;358(2):435–41.

    Article  CAS  Google Scholar 

  23. Staal A, Enserink JM, Stein JL, Stein GS, van Wijnen AJ. Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2. J Cell Physiol. 2000;185(2):269–79.

    Article  CAS  Google Scholar 

  24. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol. 2010;12(4):380–9.

    Article  CAS  Google Scholar 

  25. Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, et al. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res. 2010;70(6):2538–47.

    Article  CAS  Google Scholar 

  26. Wu M, Li X, Li X, Li G. Signaling transduction network mediated by tumor suppressor/susceptibility genes in NPC. Curr Genomics. 2009;10(4):216–22.

    Article  CAS  Google Scholar 

  27. Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR, et al. BRD7 suppresses the growth of nasopharyngeal carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem. 2007;303(1–2):141–9.

    Article  CAS  Google Scholar 

  28. Leppek K, Das R, Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–74.

    Article  CAS  Google Scholar 

  29. Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci. 2003;28(4):182–8.

    Article  CAS  Google Scholar 

  30. Jia J, Yao P, Arif A, Fox PL. Regulation and dysregulation of 3′UTR-mediated translational control. Curr Opin Genet Dev. 2013;23(1):29–34.

    Article  CAS  Google Scholar 

  31. Li K, Xu X, He Y, et al. P21-activated kinase 7 (PAK7) interacts with and activates Wnt/beta-catenin signaling pathway in breast cancer. J Cancer. 2018;9(10):1821–35.

    Article  Google Scholar 

Download references

Funding

The project was supported by Natural Science Basic research Plan in Shaanxi Province of China (2016JQ8058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xie.

Ethics declarations

Our study was approved by the Ethics Board of Affiliated Hospital of Qinghai University and was performed in accordance with the principles of the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

The project was supported by Natural Science Basic research Plan in Shaanxi Province of China (2016JQ8058).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xie, Y. BRD7-Mediated miR-3148 Inhibits Progression of Cervical Cancer by Targeting Wnt3a/β-Catenin Pathway. Reprod. Sci. 27, 877–887 (2020). https://doi.org/10.1007/s43032-019-00091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00091-8

Keywords

Navigation