Skip to main content
Log in

Sympatric procyonids in the Atlantic Forest: revealing differences in detection, occupancy, and activity of the coati and the crab-eating raccoon in a gradient of anthropogenic alteration

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The coati (Nasua nasua) and the crab-eating raccoon (Procyon cancrivorus) are sympatric procyonids that are relatively abundant and appear to exhibit tolerance towards moderate levels of anthropogenic modification. However, there are differences in their social behavior and activity patterns. Here we evaluated the probability of detection, occupancy, and daily activity patterns of these two neotropical species in different populations of the Atlantic Forest. We used data from 105 camera-trap stations distributed along five areas. We analyzed data from 7541 trap-nights. The average occupancy probability of the crab-eating raccoon (Ψ = 0.38, 0.21–0.59 CI) was lower than that of the coati (Ψ = 0.62, 0.35–0.84 CI) and that pattern was consistent in all five surveyed sites. The occupancy of the coati was negatively affected by human density and distance to water bodies, while the crab-eating raccoon occupancy was positively affected by the percentage of forests. Activity pattern was diurnal for coatis in two of the sampled areas (Rayleigh-Z0.6365, p-value < 0.05) (Rayleigh-Z0.4864, p-value < 0.001), and nocturnal for crab-eating raccoons (Rayleigh-Z0.5753, p-value < 0.05) (Rayleigh-Z0.7286, p-value < 0.05); however, the coati presented cathemeral activity in the area most modified by human activity (Rayleigh-Z0.1538, p-value = 0.472). The coati and the crab-eating raccoon responded differently to different types of human alteration. Our results show that while common, coatis and crab-eating raccoons present distinct levels of sensitivity to different types of anthropogenic changes in the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used in the analisys are available in the link: https://www.dropbox.com/s/pzvltqw6lnbhlwu/Variables.csv?dl=0. It also can be requested to the first author.

References

  • Aguiar LM, Moro-Rios RF, Silvestre T, Silva-Pereira JE, Bilski DR, Passos FC, Sekiama ML, Rocha VJ (2011) Diet of brown-nosed coatis and crab-eating raccoons from a mosaic landscape with exotic plantations in southern Brazil. Stud Neotrop Fauna Environ 46:153–161. https://doi.org/10.1080/01650521.2011.640567

    Article  Google Scholar 

  • Allevato HL (2013) Padrões espaciais e uso do habitat pelo quati Nasua nasua, (Carnivora; Procyonidae), em um fragmento de floresta atlântica urbana sob influência de recursos antropogênicos. Universidade Federal do Rio de Janeiro, Thesis

    Google Scholar 

  • Alves-Costa CP, Da Fonseca GAB, Christófaro C (2005) Variation in the diet of the brown-nosed coati (Nasua nasua) in Southeastern Brazil. J Mammal 85:478–482. https://doi.org/10.1644/1545-1542(2004)085%3c0478:vitdot%3e2.0.co;2

    Article  Google Scholar 

  • Barton K (2020) MuMIn: Multi‐model inference. R package version 1.43.17. 75

  • Bateman PW, Fleming PA (2012) Big city life: carnivores in urban environments. J Zool 287:1–23. https://doi.org/10.1111/j.1469-7998.2011.00887.x

    Article  Google Scholar 

  • Beisiegel B de M, Campos CB de (2013) Avaliação do risco de extinção do Quati Nasua nasua (Linnaeus, 1766) no Brasil. Biodiversidade Bras 269–276

  • Brito BFA (2000) Ecologia alimentar da onça-parda Puma concolor, na Mata Atlântica de Linhares, Espírito Santo. Thesis, Universidade de Brasília, Brasil

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carlucci MB, Marcilio-Silva V, Torezan JM (2021) The Southern Atlantic Forest: Use, Degradation, and Perspectives for Conservation. The Atlantic Forest. Springer International Publishing, Cham, pp 91–111

    Chapter  Google Scholar 

  • Carrillo E, Vaughan C (1993) Variación en el comportamiento de Procyon spp (Carnivora: Procyonidae) por la presencia de turistas en un área silvestre de Costa Rica. Rev Biol Trop 41:843–848. https://doi.org/10.15517/rbt.v41i3

  • Center for International Earth Science Information Network - CIESIN, Columbia University (2018) Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11

  • Cheida CC, Nakano-Oliveira E, Fusco-Costa R, Rocha-Mendes F, Quadros J (2006) Ordem carnivora. In: Reis NR, Peracchi AL, Lima IP (eds) Mamíferos do Brasil. EDUEL Press, Londrina (PR), pp 235–288

    Google Scholar 

  • Cheida CC, Guimarães FH, de Beisiegel BM (2013) Procyon cancrivorus. Biodiversidade Bras 3:283–290

  • Cheida CC (2012) Ecologia espaço-temporal e saúde do guaxinim Procyon cancrivorus (Mammalia: Carnívora) no Pantanal central. Dissertation, Universidade Federal de Minas Gerais

  • Crawshaw PG (1995) Comparative ecology of ocelot (Felis pardalis) and Jaguar (Panthera onca) in a protected subtropical forest in Brazil and Argentina. Dissertation, University of Florida

  • Emmons L, Helgen K (2016) Nasua nasua. In: IUCN Red List Threat. Species 2016. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41684A45216227.en. Accessed 8 May 2020

  • Facure KG, Giaretta AA (1996) Food habits of carnivores in a coastal Atlantic Forest of southeastern Brazil. Mammalia 60:499–502. https://doi.org/10.1515/mamm-1996-0319

    Article  Google Scholar 

  • FEPAM (2019) Biblioteca Digital. In: Fundação Estadual Proteção Ambient. Henrique Luiz Roessler –FEPAM. Bibl. Digit. http://www.fepam.rs.gov.br/biblioteca/geo/bases_geo.asp. Accessed 23 Nov 2019

  • Fick A, Hendgen AC, Kunzler DC, da Silva LG (2021) Primeiro registro do cachorro-vinagre Speothos venaticus (Carnivora, Canidae) para a Mata Atlântica do estado do Rio Grande do Sul, sul do Brasil. Biotemas 34:1–6. https://doi.org/10.5007/2175-7925.2021.e79455

    Article  Google Scholar 

  • Fiske IJ, Chandler RB (2011) Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23. https://doi.org/10.18637/jss.v043.i10

  • Garla RC, Setz EZF, Gobbi N (2001) Jaguar (Panthera onca) food habits in Atlantic rain forest of Southeastern Brazil. Biotropica 33:691–696. https://doi.org/10.1111/j.1744-7429.2001.tb00226.x

    Article  Google Scholar 

  • Gasco A, Ferro HF, Monticelli PF (2018) The communicative life of a social carnivore: acoustic repertoire of the ring-tailed coati (Nasua nasua). Bioacoustics 28:459–487. https://doi.org/10.1080/09524622.2018.1477618

    Article  Google Scholar 

  • Gaston KJ, Fuller RA (2008) Commonness, population depletion and conservation biology. Trends Ecol Evol 444(23):14–19. https://doi.org/10.1016/j.tree.2007.11.001

    Article  Google Scholar 

  • Gatti A, Bianchi R, Xavier Rosa CR, Mendes SL (2006) Diet of two sympatric carnivores, Cerdocyon thous and Procyon cancrivorus, in a resting area of Espirito Santo State, Brazil. J Trop Ecol 22:227–230. https://doi.org/10.1017/S0266467405002956

    Article  Google Scholar 

  • Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science (80-) 360:1232–1235. https://doi.org/10.1126/science.aar7121

    Article  CAS  Google Scholar 

  • Glatston AR (1994) The red panda, olingos, coatis, raccoons, and their relatives: status survey and conservation action plan for procyonids and ailurids. IUCN, Gland, Switzerland

    Google Scholar 

  • Gompper ME, Decker DM (1998) Nasua nasua. Mamm Spec. https://doi.org/10.2307/3504444

    Article  Google Scholar 

  • Graves V, Tirelli F, Pereira MJ, Fonseca C, Horn P, Resende L, Bolze G, Dutra J (2021) Impact of anthropogenic factors on occupancy and abundance of carnivorans in the Austral Atlantic forest. J Nat Conserv 59:125951. https://doi.org/10.1016/j.jnc.2020.125951

    Article  Google Scholar 

  • Higginson AD (2017) Conflict over non-partitioned resources may explain between-species differences in declines: the anthropogenic competition hypothesis. Behav Ecol Sociobiol 71:99. https://doi.org/10.1007/s00265-017-2327-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn PE, Pereira MJR, Trigo TC, Eizirik E, Tirelli FP (2020) Margay (Leopardus wiedii) in the southernmost Atlantic Forest: Density and activity patterns under different levels of anthropogenic disturbance. PLoS ONE 15:1–25. https://doi.org/10.1371/journal.pone.0232013

    Article  CAS  Google Scholar 

  • IBAMA/ICMBIO (2012) Plano de Manejo: Parque Nacional de Aparados da Serra e Serra Geral

  • ICMBio (2011) Plano de Manejo - Floresta Nacional de Passo Fundo - Inventários Florestais. Florianópolis

  • Janko C, Schröder W, Linke S, König A (2012) Space use and resting site selection of red foxes (Vulpes vulpes) living near villages and small towns in Southern Germany. Acta Theriol (Warsz) 57:245–250. https://doi.org/10.1007/s13364-012-0074-0

    Article  Google Scholar 

  • Kays R (2009) Family Procyonidae (Raccoons). In: Wilson DE, Mittermeier RA (Eds) Handbook of the Mammals of the World - Volume 1: Carnivores. Lynx Edicions Conservation International IUCN. pp 504–530

  • Keinath DA, Doak DF, Hodges KE, Prugh LR, Fagan W, Sekercioglu CH, Buchart SHM, Kauffman M (2017) A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob Ecol Biogeogr 26:115–127. https://doi.org/10.1111/geb.12509

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  • Leite Pitman MRP, Beck H, Velazco PM (2003) Mamíferos terrestres y arbóreos de la selva baja de la Amazonía Peruana: entre los Ríos Manu y Alto Purús. In: Renata LP, Pitman N, Álvarez P (eds) Alto Purús: Biodiversidad, Conservación y Manejo. Nicholas school of the environment, Duke University, Lima, Center for Tropical Conservation, pp 109–122

    Google Scholar 

  • Lintott PR, Barlow K, Bunnefeld N, Briggs P, Gajas Roig C, Park KJ (2016) Differential responses of cryptic bat species to the urban landscape. Ecol Evol 6:2044–2052. https://doi.org/10.1002/ece3.1996

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund U, Agostinelli C (2017) Package ‘circular.’ R Proj

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agric Biol Environ Stat 9:300–318. https://doi.org/10.1198/108571104X3361

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle AA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

    Article  Google Scholar 

  • MapBiomas (2019) Projeto MapBiomas—Coleção v. 3.1 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. http://mapbiomas.org/. Accessed 26 Aug 2020

  • Marchini S, Crawshaw PG Jr (2015) Human-wildlife conflicts in Brazil: a fast-growing issue. Hum Dimens Wildl 20:323–328. https://doi.org/10.1080/10871209.2015.1004145

    Article  Google Scholar 

  • Mazerolle MMJ (2020) Package ‘AICcmodavg.’ R Proj

  • Meller DA, Guadagnin DL (2016) Rediscovery of the Harpy Eagle Harpia harpyja (Accipitriformes: Accipitridae) for Rio Grande do Sul state, Brazil. Rev Bras Ornitol 24:53–57. https://doi.org/10.1007/BF03544329

    Article  Google Scholar 

  • Meller DA, Fick A, Banhos Á, Sanaiotti TM, Kasper CB (2021) The rediscovery of the Crested Eagle (Morphnus guianensis) in Rio Grande do Sul state, Brazil. Ornithol Res 29:89–93. https://doi.org/10.1007/s43388-021-00056-z

    Article  Google Scholar 

  • Mena JL, Yagui H (2019) Coexistence and habitat use of the South American coati and the mountain coati along an elevational gradient. Mamm Biol 98:119–127. https://doi.org/10.1016/j.mambio.2019.09.004

    Article  Google Scholar 

  • Meredith M, Ridout M (2014) Overview of the overlap package. R Proj 1–9

  • Michalski F, Peres CA (2005) Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol Conserv 124:383–396. https://doi.org/10.1016/j.biocon.2005.01.045

    Article  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic forest. Biotropica 32:786–792. https://doi.org/10.1111/j.1744-7429.2000.tb00618.x

    Article  Google Scholar 

  • Moura L de A (2011) Plano de manjeo - Centro de Pesquisas e Conservação da natureza Pró-Mata

  • Nakano-Oliveira E (2006) Ecologia e conservação de mamiferos carnivoros de Mata Atlantica na região do compelxo estuarino lagunar de Cananeia, Estado de São Paulo. Dissertation, Universidade Estadual de Campinas

  • Nix JH, Howell RG, Hall LK, McMillan BR (2018) The influence of periodic increases of human activity on crepuscular and nocturnal mammals: testing the weekend effect. Behav Processes 146:16–21. https://doi.org/10.1016/j.beproc.2017.11.002

    Article  PubMed  Google Scholar 

  • Ogle D (2017) Package ‘FSA.’ CRAN Repos 1–206

  • Oliveira G (2011) Mamíferos de maior porte em paisagens tropicais alteradas: seu papel em cascatas tróficas e fatores que determinam sua distribuição. Universidade de São Paulo, Thesis

    Google Scholar 

  • Oliveira TG, Pereira JA (2014) Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J Mamm Evol 21:427–436. https://doi.org/10.1007/s10914-013-9251-4

    Article  Google Scholar 

  • Paviolo A, De Angelo C, Di Blanco Y, Ferrari C, Di Bitetti M, Kasper CB, Mazim F, Soares JBG, Oliveira TG (2006) The need of transboundary efforts to preserve the southernmost jaguar population in the world. Cat News 45:12–14

    Google Scholar 

  • Pellanda M, Almeida C, de Santos M, F, Hartz S, (2010) Dieta do mão-pelada (Procyon cancrivorus, Procyonidae, Carnivora) no Parque Estadual de Itapuã, sul do Brasil. Neotrop Biol Conserv 5:154–159. https://doi.org/10.4013/nbc.2010.53.03

    Article  Google Scholar 

  • R Development Core Team (2019) R: A language and environment for statistical computing R Foundation for Statistical Computing. Austria, Vienna

    Google Scholar 

  • Regolin AL, Cherem JJ, Graipel ME, Bogoni JA, Ribeiro JW, Vancine MH, Tortato MA, Oliveira-Santos LG, Fantacini FM, Luiz MR (2017) Forest cover influences occurrence of mammalian carnivores within Brazilian Atlantic Forest. J Mammal 98:1721–1731

    Article  Google Scholar 

  • Reid F, Helgen K, González-Maya J. (2016) Procyon cancrivorus. In: IUCN Red List Threat. Species 2016. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41685A45216426.en. Accessed 25 Apr 2020

  • Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat 14:322–337. https://doi.org/10.1198/jabes.2009.08038

    Article  Google Scholar 

  • Rocha-Mendes F, Mikich SB, Quadros J, Pedro WA (2010) Feeding ecology of carnivores (Mammalia, Carnivora) in Atlantic Forest remnants, Southern Brazil. Biota Neotrop 10:21–30. https://doi.org/10.1590/s1676-06032010000400001

    Article  Google Scholar 

  • Ruim JB (2014) Relações entre tamanho populacional, uso do habitat, dieta e predação de ninhos por Nasua nasua (Carnivora, Procyonidae) em remanescentes florestais. Dissertation, Universidade Estadual Paulista

  • Schochet AB, Hung KLJ, Holway DA (2016) Bumble bee species exhibit divergent responses to urbanisation in a Southern California landscape. Ecol Entomol 41:685–692. https://doi.org/10.1111/een.12343

    Article  Google Scholar 

  • SEMA (2005) Plano de manejo do Parque Estadual do Turvo

  • Soria-Díaz L, Monroy-Vilchis O, Zarco-González Z (2016) Activity pattern of puma (Puma concolor) and its main prey in central Mexico. Anim Biol 66:13–20. https://doi.org/10.1163/15707563-00002487

    Article  Google Scholar 

  • Soule ME, Bolger DT, Alberts AC, Wrights J, Sorice M, Hill S (1988) Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv Biol 2:75–92. https://doi.org/10.1111/j.1523-1739.1988.tb00337.x

    Article  Google Scholar 

  • Swihart RK, Gehring TM, Kolozsvary MB, Nupp TE (2003) Responses of “resistant” vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers Distrib 9:1–18. https://doi.org/10.1046/j.1472-4642.2003.00158.x

    Article  Google Scholar 

  • Timm R, Cuarón AD, Reid F, Helgen K, González-Maya JF (2016) Procyon lotor, Northern Raccoon. In: IUCN Red List Threat. Species. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T416. Accessed 23 Nov 2019

  • Tirelli FP, De Freitas TRO, Michalski F, Percequillo AR, Eizirik E (2019) Using reliable predator identification to investigate feeding habits of Neotropical carnivores (Mammalia, Carnivora) in a deforestation frontier of the Brazilian Amazon. Mammalia 83:415–427. https://doi.org/10.1515/mammalia-2018-0106

    Article  Google Scholar 

  • Trigo TC, Fontoura-Rodrigues ML, Kasper CB (2013) Carnívoros continentais. In: Weber M de M, Roman C, Cáceres NC (eds) Mamíferos do Rio Grande do Sul. Editora UFSM, Santa Maria, Brazil. Editora da UFSM, Santa Maria - Rio Grande do Sul, pp 343–376

  • Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias N, Avgar T, Bartlam-Brooks H, Bayarbaatar B, Belant JL, Bertassoni A, Beyer D, Bidner L, van Beest FM, Blake S, Blaum N, Bracis C, Brown D, de Bruyn PJN, Cagnacci F, Calabrese JM, Camilo-Alves C, Chamaillé-Jammes S, Chiaradia A, Davidson SC, Dennis T, DeStefano S, Diefenbach D, Douglas-Hamilton I, Fennessy J, Fichtel C, Fiedler W, Fischer C, Fischhoff I, Fleming CH, Ford AT, Fritz SA, Gehr B, Goheen JR, Gurarie E, Hebblewhite M, Heurich M, Hewison AJM, Hof C, Hurme E, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kane A, Kappeler PM, Kauffman M, Kays R, Kimuyu D, Koch F, Kranstauber B, LaPoint S, Leimgruber P, Linnell JDC, López-López P, Markham AC, Mattisson J, Medici EP, Mellone U, Merrill E, de Miranda MG, Morato RG, Morellet N, Morrison TA, Díaz-Muñoz SL, Mysterud A, Nandintsetseg D, Nathan R, Niamir A, Odden J, O’Hara RB, Oliveira-Santos LGR, Olson KA, Patterson BD, Cunha de Paula R, Pedrotti L, Reineking B, Rimmler M, Rogers TL, Rolandsen CM, Rosenberry CS, Rubenstein DI, Safi K, Saïd S, Sapir N, Sawyer H, Schmidt NM, Selva N, Sergiel A, Shiilegdamba E, Silva JP, Singh N, Solberg EJ, Spiegel O, Strand O, Sundaresan S, Ullmann W, Voigt U, Wall J, Wattles D, Wikelski M, Wilmers CC, Wilson JW, Wittemyer G, Zięba F, Zwijacz-Kozica T, Mueller T (2018) Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science (80-) 359:466–469. https://doi.org/10.1126/science.aam9712

    Article  CAS  Google Scholar 

  • Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34:28. https://doi.org/10.2307/2332510

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1974) Probabilities of Rayleigh’s test statistics for circular data. Behav Res Methods Instrum 6:450. https://doi.org/10.3758/BF03200403

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Pearson Education India, New Jersey

    Google Scholar 

  • Zeveloff SI (2002) Raccoons: a natural history. UBC Press

    Google Scholar 

  • Zimbres B, Peres CA, Penido G, Machado RB (2018) Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier. Biodivers Conserv 27:2815–2836. https://doi.org/10.1007/s10531-018-1571-5

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and Panthera for funding part of this study. Jordani Dutra was supported by scholarships by BIC/UFRGS, Flávia P. Tirelli by PNPD/CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico—Maria João Ramos Pereira by CNPq productivity grant, Paula Horn and Victoria Graves by MSc CAPES scholarship. We would like to thank all the conservation units’ staff and landowners for allowing us access to their lands. We also would like to thank all persons who collaborated during fieldwork, especially Magnus Severo, André Osorio, Jaime Diehl, Turvo State Park, and Passo Fundo National Forest rangers. We also thank the Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Fundação Zoobotânica do Rio Grande do Sul (FZB RS), and Universidad de la Republica (UdelaR) for the loan of field material and field support, with special thanks to Carla Fontana, Eduardo Eizirik, Diego Queirolo, Carol Espinosa, and Jaime Diehl, and. Thanks to all students who helped to process all the data collected.

Author information

Authors and Affiliations

Authors

Contributions

All authors did fieldwork to collect the data. VG, PH, and JD created the variables. JD did all the analyses. Writing led by JD, FPT, and MJRP.

Corresponding author

Correspondence to Jordani Dutra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Adriano Martinoli.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1071 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, J., Ramos Pereira, M.J., Horn, P. et al. Sympatric procyonids in the Atlantic Forest: revealing differences in detection, occupancy, and activity of the coati and the crab-eating raccoon in a gradient of anthropogenic alteration. Mamm Biol 103, 289–301 (2023). https://doi.org/10.1007/s42991-023-00349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-023-00349-4

Keywords

Navigation