Skip to main content

Advertisement

Log in

A tale of two African mongooses (Carnivora: Herpestidae): differing genetic diversity and geographical structure across a continent

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Phylogeographies of African mammals reveal patterns that correlate with Pleistocene environmental fluctuations and geographical barriers, which may affect species differently according to their habitat preferences and dispersal capabilities. The marsh mongoose Atilax paludinosus, a widely distributed African carnivoran, is a good model to compare with other African mammals. Here, we aimed to determine if its phylogeographical patterns depend on habitat preferences or other factors, such as dispersal capabilities. One nuclear and two mitochondrial markers were sequenced for marsh mongooses sampled throughout the species range, and sequences were also analysed for another widely distributed African mongoose, the white-tailed mongoose Ichneumia albicauda, previously studied, but more completely for this study. In the marsh mongoose we observed a deep divergence between West + Central Africa and East + South Africa, a pattern also observed in both forest and savanna mammals. With good dispersal capabilities and a preference for riparian habitats, the marsh mongoose may have been confined to forest refugia during Quaternary dry periods and may have used rivers as dispersal corridors. In contrast, in the white-tailed mongoose, the haplogroups were strongly divergent which may indicate more limited dispersal capabilities, but also reflect the preference of this species for more open habitats. These results suggest that life history traits, in addition to habitat preferences, had an impact on how these species were affected by past environmental changes, which is reflected in the geographical genetic structure today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated and analysed during the current study are available in GenBank.

References

  • Admasu E, Thirgood SJ, Bekele A, Laurenson MK (2004) Spatial ecology of white-tailed mongoose in farmland in the Ethiopian Highlands. Afr J Ecol 42:153–159. https://doi.org/10.1111/j.1365-2028.2004.00498.x

    Article  Google Scholar 

  • Alter SE, Palumbi SR (2009) Comparing evolutionary patterns and variability in the mitochondrial control region and cytochrome b in three species of baleen whales. J Mol Evol 68:97–111. https://doi.org/10.1007/s00239-008-9193-2

    Article  CAS  PubMed  Google Scholar 

  • Anthony NM, Johnson-Bawe M, Jeffery K, Clifford SL, Abernethy KA, Tutin CE, Lahm SA, White LJT, Utley JF, Bruford MW (2007) The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa. Proc Natl Acad Sci USA 104:20432–20436. https://doi.org/10.1073/pnas.0704816105

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker CM (1992) Atilax paludinosus. Mammal Spec 408:1–6

    Google Scholar 

  • Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662. https://doi.org/10.1644/06-MAMM-F-038R2.1

    Article  PubMed  Google Scholar 

  • Baker CM, Ray JC (2013) Atilax paludinosus marsh mongoose. In: Kingdon J, Hoffmann M (eds) The nammals of Africa. V. carnivores, pangolins, equids and rhinoceroses. Bloomsbury, London, pp 298–302

    Google Scholar 

  • Baker C, Stuart C, Stuart M, Nqinana A, Peinke D, Maddock AH, Perrin MR, Somers MJ, Do Linh San E (2016) A conservation assessment of Atilax paludinosus. In: Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT (eds) The red list of mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, Johannesburg, pp 1–6

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  • Barros T, Gaubert P, Rocha RG, Bandeira V, Souto L, Mira A, Fonseca C (2016) Mitochondrial demographic history of the Egyptian mongoose (Herpestes ichneumon), an expanding carnivore in the Iberian Peninsula. Mamm Biol 81:176–184. https://doi.org/10.1016/j.mambio.2015.09.003

    Article  Google Scholar 

  • Bertola LD, Jongbloed H, van der Gaag KJ, de Knijff P, Yamaguchi N, Hooghiemstra H, Bauer H, Henschel P, White PA, Driscoll CA, Tende T, Ottosson U, Saidu Y, Vrieling K, de Iongh HH (2016) Phylogeographic patterns in Africa and high resolution delineation of genetic clades in the lion (Panthera leo). Sci Rep 6:30807. https://doi.org/10.1038/srep30807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohoussou KH, Cornette R, Akpatou B, Colyn M, Peterhans JK, Kennis J, Sumbera R, Verheyen E, N’Goran E, Katuala P, Nicolas V (2015) The phylogeography of the rodent genus Malacomys suggests multiple Afrotropical Pleistocene lowland forest refugia. J Biogeogr 42:2049–2061. https://doi.org/10.1111/jbi.12570

    Article  Google Scholar 

  • Born C, Alvarez N, McKey D, Ossari S, Wickings EJ, Hossaert-McKey M, Chevallier MH (2011) Insights into the biogeographical history of the Lower Guinea Forest Domain: evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana. Mol Ecol 20:131–142. https://doi.org/10.1111/j.1365-294X.2010.04919.x

    Article  PubMed  Google Scholar 

  • Bryja J, Mikula O, Sumbera R, Meheretu Y, Aghova T, Lavrenchenko LA, Mazoch V, Oguge N, Mbau JS, Welegerima K, Amundala N, Colyn M, Leirs H, Verheyen E (2015) Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evol Biol 14:256. https://doi.org/10.1186/s12862-014-0256-2

    Article  Google Scholar 

  • Coetzee C (1977) Order carnivora. In: Meester J, Setzer HW (eds) The mammals of Africa: an identification manual, part. 8. Smithsonian Institution Press, Washington, pp 1–42

  • Cowling SA, Cox PM, Jones CD, Maslin MA, Peros M, Spall SA (2008) Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and trans-African migration of plants and animals. Global Change Biol 14:827–840. https://doi.org/10.1111/j.1365-2486.2007.01524.x

    Article  Google Scholar 

  • Cuypers LN, Sabuni C, Sumbera R, Aghova T, Liskova E, Leirs H, Baird SJE, Gouey de Bellocq J, Bryja J (2022) Biogeographical importance of the livingstone mountains in southern Tanzania: comparative genetic structure of small non-volant mammals. Front Ecol Evol. https://doi.org/10.3389/fevo.2021.742851

    Article  Google Scholar 

  • Dehghani R, Wanntorp L, Pagani P, Kallersjo M, Werdelin L, Veron G (2008) Phylogeography of the white-tailed mongoose (Herpestidae, Carnivora, Mammalia) based on partial sequences of the mtDNA control region. J Zool 276:385–393. https://doi.org/10.1111/j.1469-7998.2008.00502.x

    Article  Google Scholar 

  • Do Linh San E, Nqinana A, Madikiza ZJK, Somers MJ (2020) Diet of the marsh mongoose around a non-permanent reservoir: response of a generalist opportunist forager to the absence of crabs. Afr Zool 55:240–244. https://doi.org/10.1080/15627020.2020.1768145

    Article  Google Scholar 

  • Do Linh San E, Angelici FM, Maddock AH, Baker CM, Ray J (2015) Atilax paludinosus. The IUCN red list of threatened species 2015: e.T41590A45204865. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T41590A45204865.en. Downloaded on 10 March 2021

  • Do Linh San E, Maddock AH, Gaubert P, Palomares F (2016) Herpestes ichneumon. The IUCN red list of threatened species 2016: e.T41613A45207211. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41613A45207211.en. Downloaded on 24 June 2021

  • Do Linh San E (2015) Ichneumia albicauda. The IUCN red list of threatened species 2015: e.T41620A45208640. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T41620A45208640.en. Downloaded on 24 June 2021

  • Donkpegan ASL, Pineiro R, Heuertz M, Duminil J, Dainou K, Doucet JL, Hardy OJ (2020) Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am J Bot 107:498–509

    Article  PubMed  Google Scholar 

  • Drake NA, Breeze P, Parker A (2013) Palaeoclimate in the Saharan and Arabian deserts during the middle palaeolithic and the potential for hominin dispersals. Quatern Int 300:48–61. https://doi.org/10.1016/j.quaint.2012.12.018

    Article  Google Scholar 

  • Fernandes CA, Ginja C, Pereira I, Tenreiro R, Bruford MW, Santos-Reis M (2008) Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula. Conserv Genet 9:681–690. https://doi.org/10.1007/s10592-007-9364-5

    Article  CAS  Google Scholar 

  • Fernandes CA (2011) Colonization time of Arabia by the white-tailed mongoose Ichneumia albicauda as inferred from mitochondrial DNA sequences. Zool Middle East 54(Suppl 3):111–124

  • Gaubert P, Tranier M, Delmas AS, Colyn M, Veron G (2004) First molecular evidence for reassessing phylogenetic affinities between genets (Genetta) and the enigmatic genet-like taxa Osbornictis, Poiana and Prionodon (Carnivora, Viverridae). Zool Scr 33:117–129. https://doi.org/10.1111/j.1463-6409.2004.00140.x

    Article  Google Scholar 

  • Gaubert P, Machordom A, Morales A, Vicente Lopez-Bao J, Veron G, Amin M, Barros T, Basuony M, Djagoun CAMS, Do Linh San E, Fonseca C, Geffen E, Ozkurt SO, Cruaud C, Couloux A, Palomares F (2011) Comparative phylogeography of two African carnivorans presumably introduced into Europe: disentangling natural versus human-mediated dispersal across the Strait of Gibraltar. J Biogeogr 38:341–358. https://doi.org/10.1111/j.1365-2699.2010.02406.x

    Article  Google Scholar 

  • Gaubert P, Patel R, Veron G, Goodman SM, Willsch M, Vasconcelos R, Lourenço A, Sigaud M, Justy F, Joshi BD, Fickel J, Wilting A (2017) Molecular biogeography of the small Indian civet and origin of introductions on western Indian Ocean islands. J Hered 108:270–279. https://doi.org/10.1093/jhered/esw085

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist JS, Jennings AP, Veron G, Cavallini P (2009) Family Herpestidae (Mongooses). In: Wilson DE, Mittermeier R (eds) Handbook of the mammals of the world, vol 1. Carnivores. Lynx Edicions, Barcelona, pp 222–329

    Google Scholar 

  • Grubb P, Sandrock O, Kullmer O, Kaiser TM, Schrenk F (1999) Relationships between eastern and southern African mammal faunas. In: Bromage T, Schrenk F (eds) African biogeography, climate change and early hominid evolution. Oxford University Press, New York, pp 253–267

    Google Scholar 

  • Gryseels S, Mbala-Kingebeni P, Akonda I, Angoyo R, Ayouba A, Baelo P, Mukadi DB, Bugentho E, Bushmaker T, Butel C, Calvignac-Spencer S, Delaporte E, De Smet B, Dux A, Edidi-Atani F, Fischer R, Kahandi C, Kapetshi J, Sumba SK, Kouadio L, Bendeke AM, Mande C, Sepolo GM, Moudindo J, Ngole EM, Musaba P, Mutombo P, Bass IN, Nebesse C, Ngoy S, Kumogo SN, Seifert SN, Tanzito J, Akaibe D, Amundala N, Arien KK, Gembu GC, Leendertz FH, Leirs H, Mukinzi JC, Munster V, Muyembe-Tamfum JJ, Peeters M, Verheyen E, Ahuka-Mundeke S (2020) Role of wildlife in emergence of ebola virus in Kaigbono (Likati), democratic republic of the Congo, 2017. Emerg Infect Dis 26:2205–2209. https://doi.org/10.3201/eid2609.191552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TE (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S 41:95–98

    CAS  Google Scholar 

  • Hanova A, Konecny A, Mikula O, Bryjova A, Sumbera R, Bryja J (2021) Diversity, distribution, and evolutionary history of the most studied African rodents, multimammate mice of the genus Mastomys: an overview after a quarter of century of using DNA sequencing. J Zool Syst Evol Res 59:2500–2518. https://doi.org/10.1111/jzs.12569

    Article  Google Scholar 

  • Hassanin A, Veron G (2016) The complete mitochondrial genome of the boky-boky, Mungotictis decemlineata, the first representative of the Malagasy carnivores (Mammalia, Carnivora, Eupleridae). Mitochondr DNA 27:908–909. https://doi.org/10.3109/19401736.2014.926480

    Article  CAS  Google Scholar 

  • Hassanin A, Khouider S, Gembu GC, Goodman SM, Kadjo B, Nesi N, Pourrut X, Nakouné E, Bonillo C (2015) The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. C R Biol 338:197–211. https://doi.org/10.1016/j.crvi.2014.12.003

    Article  PubMed  Google Scholar 

  • Hassanin A, Houck ML, Tshikung D, Kadjo B, Davis H, Ropiquet A (2018) Multi-locus phylogeny of the tribe Tragelaphini (Mammalia, Bovidae) and species delimitation in bushbuck: evidence for chromosomal speciation mediated by interspecific hybridization. Mol Phylogenet Evol 129:96–105. https://doi.org/10.1016/j.ympev.2018.08.006

    Article  PubMed  Google Scholar 

  • Hassanin A, Veron G, Ropiquet A, Jansen van Vuuren B, Lecu A, Goodman SM, Haider J, Trung Thanh N (2021) Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. PLoS One 16(2):e0240770. https://doi.org/10.1371/journal.pone.0240770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquet F, Nicolas V, Colyn M, Kadjo B, Hutterer R, Decher J, Akpatou B, Cruaud C, Denys C (2014) Forest refugia and riverine barriers promote diversification in the West African pygmy shrew (Crocidura obscurior complex, Soricomorpha). Zool Scr 43:131–148

    Article  Google Scholar 

  • Jansen Van Vuuren B, Woolaver L, Goodman SM (2012) Genetic population structure in the boky-boky (Carnivora: Eupleridae), a conservation flagship species in the dry deciduous forests of central western Madagascar. Anim Conserv 15:164–173. https://doi.org/10.1111/j.1469-1795.2011.00498.x

    Article  Google Scholar 

  • Jennings AP, Veron G (2019) Mongooses of the world. Whittles Publishing Ltd, Caithness

    Google Scholar 

  • Joordens JCA, Feibel CS, Vonhof HB, Schulp AS, Kroon D (2019) Relevance of the eastern African coastal forest for early hominin biogeography. J Hum Evol 131:176–202. https://doi.org/10.1016/j.jhevol.2019.03.012

    Article  PubMed  Google Scholar 

  • Koepfli KP, Jenks SM, Eizirik E, Zahirpour T, Van Valkenburgh B, Wayne RK (2006) Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol Phylogenet Evol 38:603–620. https://doi.org/10.1016/j.ympev.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  • Kopp GH, Roos C, Butynski TM, Wildman DE, Alagaili AN, Groeneveld LF, Zinner D (2014) Out of Africa, but how and when? The case of hamadryas baboons (Papio hamadryas). J Hum Evol 76:154–164. https://doi.org/10.1016/j.jhevol.2014.08.003

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  • Levinsky I, Araújo MB, Nogués-Bravo D, Haywood AM, Valdes PJ, Rahbek C (2013) Refugia of African birds and mammals. Global Ecol Biogeogr 22:351–363. https://doi.org/10.1111/geb.12045

    Article  Google Scholar 

  • Lorenzen ED, Heller R, Siegismund HR (2012) Comparative phylogeography of African savannah ungulates. Mol Ecol 21:3656–3670. https://doi.org/10.1111/j.1365-294X.2012.05650.x

    Article  CAS  PubMed  Google Scholar 

  • Maley J (1996) The African rain forest—main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proc R Soc Ed B-Bi 104:31–73. https://doi.org/10.1017/S0269727000006114

    Article  Google Scholar 

  • Markotter W, Kuzmin I, Rupprecht CE, Randles J, Sabeta CT, Wandeler AI, Nel LH (2006) Isolation of Lagos bat virus from water mongoose. Emerg Infect Dis 12:1913–1918. https://doi.org/10.3201/eid1212.060514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mboumba JF, Deleporte P, Colyn M, Nicolas V (2011) Phylogeography of Mus (Nannomys) minutoides (Rodentia, Muridae) in West Central African savannahs: singular vicariance in neighbouring populations. J Zool Syst Evol Res 49:77–85. https://doi.org/10.1111/j.1439-0469.2010.00579.x

    Article  Google Scholar 

  • Mizerovska D, Nicolas V, Demos TC, Akaibe D, Colyn M, Denys C, Kaleme PK, Katuala P, Kennis J, Peterhans JCK, Laudisoit A, Missoup AD, Sumbera R, Verheyen E, Bryja J (2019) Genetic variation of the most abundant forest-dwelling rodents in Central Africa (Praomys jacksoni complex): evidence for Pleistocene refugia in both montane and lowland forests. J Biogeogr 46:1466–1478. https://doi.org/10.1111/jbi.13604

    Article  Google Scholar 

  • Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving Pan-African biodiversity. PLoS One 2(5):e454. https://doi.org/10.1371/journal.pone.0000454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563. https://doi.org/10.1146/annurev.ecolsys.31.1.533

    Article  Google Scholar 

  • Morley CG, McLenachan PA, Lockhart PJ (2007) Evidence for the presence of a second species of mongoose in the Fiji Islands. Pac Conserv Biol 13:29–34

    Article  Google Scholar 

  • Nakashima Y, Iwata Y, Ando C, Nze-Nkogue C, Inoue E, Akomo-Okoue EF, Mbehang Nguema PP, Diop Bineni T, Ngok Banak L, Takenoshita Y, Ngomanda A, Yamagiwa J (2022) Spatial and temporal resource partitioning of small carnivores in the African rainforest: implications for conservation and management. In: Do Linh San E, Sato JJ, Belant JL, Somers MJ (eds) Small carnivores: evolution, ecology, behaviour, and conservation. Wiley-Blackwell, Oxford, pp 291–306

  • Nascimento F, Oliveira-Silva M, Veron G, Salazar-Bravo J, Gonçalves P, Langguth A, Silva C, Bonvicino C (2017) The evolutionary history and genetic diversity of Kinkajous, Potos flavus (Carnivora, Procyonidae). J Mamm Evol 24:439–451. https://doi.org/10.1007/s10914-016-9354-9

    Article  Google Scholar 

  • Nicolas V, Mboumba JF, Verheyen E, Denys C, Lecompte E, Olayemi A, Missoup AD, Katuala P, Colyn M (2008) Phylogeographic structure and regional history of Lemniscomys striatus (Rodentia: Muridae) in tropical Africa. J Biogeogr 35:2074–2089. https://doi.org/10.1111/j.1365-2699.2008.01950.x

    Article  Google Scholar 

  • Nicolas V, Fabre P-H, Bryja J, Denys C, Verheyen E, Missoup AD, Olayemi A, Katuala P, Dudu A, Colyn M, Peterhans JK, Demos T (2020) The phylogeny of the African wood mice (Muridae, Hylomyscus) based on complete mitochondrial genomes and five nuclear genes reveals their evolutionary history and undescribed diversity. Mol Phylogenet Evol 144:106703. https://doi.org/10.1016/j.ympev.2019.106703

    Article  PubMed  Google Scholar 

  • Olayemi A, Nicolas V, Hulselmans J, Missoup AD, Fichet-Calvet E, Amundala D, Dudu A, Dierckx T, Wendelen W, Leirs H, Verheyen E (2012) Taxonomy of the African giant pouched rats (Nesomyidae: Cricetomys): molecular and craniometric evidence support an unexpected high species diversity. Zool J Linn Soc 165:700–719. https://doi.org/10.1111/j.1096-3642.2012.00823.x

    Article  Google Scholar 

  • Palomares F, Godoy JA, Piriz A, O’Brien SJ (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182. https://doi.org/10.1046/j.1365-294x.2002.01608.x

    Article  CAS  PubMed  Google Scholar 

  • Patou ML, Mclenachan PA, Morley CG, Couloux A, Jennings AP, Veron G (2009) Molecular phylogeny of the Herpestidae (Mammalia, Carnivora) with a special emphasis on the Asian Herpestes. Mol Phylogenet Evol 53:69–80. https://doi.org/10.1016/j.ympev.2009.05.038

    Article  CAS  PubMed  Google Scholar 

  • Perez M, Li B, Tillier A, Cruaud A, Veron G (2006) Systematic relationships of the bushy-tailed and black-footed mongooses (genus Bdeogale, Herpestidae, Carnivora) based on molecular, chromosomal and morphological evidence. J Zool Syst Evol Res 44:251–259. https://doi.org/10.1111/j.1439-0469.2006.00359.x

    Article  Google Scholar 

  • Petzold A, Magnant A-S, Edderai D, Chardonnet B, Rigoulet J, Saint-Jalme M, Hassanin A (2020) First insights into past biodiversity of giraffes based on mitochondrial sequences from museum specimens. Eur J Taxon 703:1–33. https://doi.org/10.5852/ejt.2020.717.1093

    Article  Google Scholar 

  • Rapson SA, Goldizen AW, Seddon JM (2012) Species boundaries and possible hybridization between the black mongoose (Galerella nigrata) and the slender mongoose (Galerella sanguinea). Mol Phylogenet Evol 65:831–839. https://doi.org/10.1016/j.ympev.2012.08.005

    Article  PubMed  Google Scholar 

  • Ray JC (1997) Comparative ecology of two African forest mongooses, Herpestes naso, and Atilax paludinosus. Afr J Ecol 35:237–253

    Article  Google Scholar 

  • Ray JC, Sunquist ME (2001) Trophic relations in a community of African rainforest carnivores. Oecologia 127:395–408. https://doi.org/10.1007/s004420000604

    Article  CAS  PubMed  Google Scholar 

  • Roth AM, Cords M (2015) Some nocturnal and crepuscular mammals of Kakamega forest: photographic evidence. J East Afr Nat Hist 104:213–225

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, Lanave C, Pesole G, Sbisa E (1993) Peculiar features and evolution of mitochondrial genome in mammals. In: DiMauro S, Wallace DC (eds) Mitochondrial DNA in human pathology. Raven Press, New York, pp 27–37

    Google Scholar 

  • Sonet G, Colyn M, Verheyen E, Nagy ZT, Wendelen W, Van Rompaey H, Hulselmans J (2014) Afrotropical forest-dwelling mongooses (Mammalia: Herpestidae: Crossarchus) investigated by craniometry and mitochondrial DNA. J Zool Syst Evol Res 52:323–330. https://doi.org/10.1111/jzs.12066

    Article  Google Scholar 

  • Streicher JP, Ramesh T, Downs CT (2020) Home range and core area utilisation of three co-existing mongoose species: large grey, water and white-tailed in the fragmented landscape of the KwaZulu-Natal Midlands, South Africa. Mamm Biol 100:273–283. https://doi.org/10.1007/s42991-020-00028-8

    Article  Google Scholar 

  • Streicher JP, Ramesh T, Downs CT (2021) An African urban mesocarnivore: navigating the urban matrix of Durban. South Africa Global Ecol Conserv 26:e01482. https://doi.org/10.1016/j.gecco.2021.e01482

    Article  Google Scholar 

  • Stribna T, Romportl D, Demjanovic J, Vogeler A, Tschapka M, Benda P, Horacek I, Juste J, Goodman SM, Hulva P (2019) Pan African phylogeography and palaeodistribution of rousettine fruit bats: ecogeographic correlation with Pleistocene climate vegetation cycles. J Biogeogr 46:2336–2349. https://doi.org/10.1111/jbi.13651

    Article  Google Scholar 

  • Szabo B, Haynes C, Maxwell TA (1995) Ages of Quaternary pluvial episodes determined by uranium-series and radiocarbondating of lacustrine deposits of Eastern Sahara. Palaeogeog Palaeocl 113:227–242. https://doi.org/10.1016/0031-0182(95)00052-

    Article  Google Scholar 

  • Taylor ME (2013) Ichneumia albicauda white-tailed mongoose. In: Kingdon J, Hoffmann M (eds) The mammals of Africa. V. Carnivores, pangolins, equids and rhinoceroses. Bloomsbury, London, pp 342–346

    Google Scholar 

  • Tobe SS, Kitchener AC, Linacre AMT (2010) Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS One 5(11):e14156. https://doi.org/10.1371/journal.pone.0014156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veron G, Heard S (2000) Molecular systematics of the Asiatic Viverridae (Carnivora) inferred from mitochondrial cytochrome b sequence analysis. J Zool Syst Evol Res 38:209–217

    Article  Google Scholar 

  • Veron G, Colyn M, Dunham AE, Taylor P, Gaubert P (2004) Molecular systematics and origin of sociality in mongooses (Herpestidae, Carnivora). Mol Phylogenet Evol 30:582–598. https://doi.org/10.1016/S1055-7903(03)00229-X

    Article  CAS  PubMed  Google Scholar 

  • Veron G, Willsch M, Dacosta V, Patou ML, Seymour A, Bonillo C, Couloux A, Wong ST, Jennings AP, Fickel J, Wilting A (2014) The distribution of the Malay civet Viverra tangalunga (Carnivora: Viverridae) across Southeast Asia: natural or human-mediated dispersal? Zool J Linn Soc 170:917–932. https://doi.org/10.1111/zoj.12110

    Article  Google Scholar 

  • Veron G, Patou ML, Debruyne R, Couloux A, Fernandez DAP, Wong ST, Fuchs J, Jennings AP (2015a) Systematics of the Southeast Asian mongooses (Herpestidae, Carnivora): solving the mystery of the elusive collared mongoose and Palawan mongoose. Zool J Linn Soc 173:236–248. https://doi.org/10.1111/zoj.12206

    Article  Google Scholar 

  • Veron G, Patou ML, Jennings AP (2015b) Molecular systematics of the small-toothed palm civet (Arctogalidia trivirgata) reveals a strong divergence of Bornean populations. Mamm Biol 80:347–354. https://doi.org/10.1016/j.mambio.2015.02.003

    Article  Google Scholar 

  • Veron G, Dupré D, Jennings AP, Gardner CJ, Hassanin A, Goodman SM (2017) New insights into the systematics of Malagasy mongoose-like carnivorans (Carnivora, Eupleridae, Galidiinae) based on mitochondrial and nuclear DNA sequences. J Zool Syst Evol Res 55:250–264. https://doi.org/10.1111/jzs.12168

    Article  Google Scholar 

  • Veron G, Dupré D, Lührs M-L, Kappeler PM, Dollar L, Pomerantz J, Goodman SM (2018) Genetic polymorphism and structure of wild and zoo populations of the fosa (Eupleridae, Carnivora), the largest living carnivoran of Madagascar. Mamm Biol 92:68–77. https://doi.org/10.1016/j.mambio.2018.04.007

    Article  Google Scholar 

  • Veron G, Patou ML, Jennings AP (2022) Systematics and evolution of the mongooses (Herpestidae, Carnivora). In: Do Linh San E, Sato JJ, Belant JL, Somers MJ (eds) Small carnivores: evolution, ecology, behaviour, and conservation. Wiley-Blackwell, Oxford, pp 61–78

  • Walker JD, Geissman JW, Bowring SA, Babcock LE, compilers (2018) Geologic Time Scale v. 5.0: Geological Society of America. https://doi.org/10.1130/2018.CTS005R3C.

  • Werdelin L (2008) Biogeographic relationships of African carnivoran faunas, 7–1.2 Ma. C R Palevol 7:645–656. https://doi.org/10.1016/j.crpv.2008.09.014

    Article  Google Scholar 

  • Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:407. https://doi.org/10.1016/0168-9525(93)90102-n

    Article  CAS  PubMed  Google Scholar 

  • Yalden DW, Largen MJ, Kock D, Hillman JC (1996) Catalogue of the mammals of ethiopia and eritrea. 7. Revised checklist, zoogeography and conservation. Trop Zool 9:73–164

    Article  Google Scholar 

  • Yoder AD, Burns MM, Zehr S, Delefosse T, Veron G, Goodman SM, Flynn JJ (2003) Single origin of Malagasy carnivora from an African ancestor. Nature 421:734–737. https://doi.org/10.1038/nature01303

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhang YP (2005) Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear beta-fibrinogen intron 7 to carnivores. Mol Phylogenet Evol 35:483–495. https://doi.org/10.1016/j.ympev.2005.01.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the following people and institutions for providing samples or for the help during this study: F. Catzeflis (ISEM, Université de Montpellier); M. Colyn (Université Rennes 1, Station Biologique de Paimpont); F. de Haas van Dorsser (United Arab Emirates University); C. Denys and A. Lalis (ISYEB, MNHN); A. Dunham (State University of New York at Stony Brook); J. Eger (Royal Ontario Museum); L. Heaney, B. Patterson and J. Phelps (Field Museum of Natural History); K. Laurenson (University of Edinburgh); S. Lavoué (MNHN); I. Parker; P. Taylor (Durban Museum); and P. Vercammen (Breeding Centre for Endangered Arabian Wildlife). We thank Adam W. Ferguson (Field Museum of Natural History, Chicago) for specimens’ identification. Molecular work was undertaken at the ‘Service de Systématique Moléculaire’ (UMS CNRS 2700, MNHN), and we thank the lab staff for their help, and in particular, C. Bonillo. GV received financial support from MNHN and CNRS.

Funding

Financial support was received from Muséum National d’Histoire Naturelle and Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Géraldine Veron and Caroline Daniel. The first draft of the manuscript was written by Géraldine Veron and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Géraldine Veron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Allan McDevitt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veron, G., Daniel, C., Pagani, P. et al. A tale of two African mongooses (Carnivora: Herpestidae): differing genetic diversity and geographical structure across a continent. Mamm Biol 103, 37–52 (2023). https://doi.org/10.1007/s42991-022-00321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-022-00321-8

Keywords

Navigation