Skip to main content

Advertisement

Log in

Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula

  • Short Communication
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetic species identification of non-invasively collected samples has become an important tool in ecological research, management and conservation and wildlife forensics. This is especially true for carnivores, due to their elusive nature, and is crucial when several ecologically and phylogenetically close species, with similar faeces, hairs, bones and/or pelts, occur in sympatry. This is the case of the Iberian Peninsula, a region with a carnivore community of 16 species—about two-thirds of the European carnivore fauna. Here we present a simple, efficient and reliable PCR-based protocol, using a novel set of species-specific primers, for the unambiguous identification to species of non-invasively collected samples or forensic materials from Iberian carnivores. For each species, from the consensus of all cytochrome b haplotypes, found here and previously reported, we designed species-specific primer pairs for short fragments, the most likely to persist in low-quantity and degraded DNA samples. The predicted specificity of each primer pair was assessed through PCR of positive DNA extracts from the carnivore species, from an exhaustive array of potential prey and from humans. The robustness of PCR amplification for non-invasively sampled DNA was tested with scat samples. The primers did not produce false positives and correctly identified all carnivore samples to the species level. In comparison with sequencing and PCR-RFLP assays, our method is, respectively, cost- and time-effective, and is especially suited for monitoring surveys targeting multiple populations/species. It also introduces an approach that works for a whole community of carnivores living sympatrically over a large geographic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

References

  • Ayyadevara S, Thaden JJ, Reis RJS (2000) Discrimination of primer 3′-nucleotide mismatch by Taq DNA polymerase during polymerase chain reaction. Anal Biochem 284:11–18

    Article  PubMed  CAS  Google Scholar 

  • Bartlett SE, Davidson WS (1992) FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. Biotechniques 12:408–411

    PubMed  CAS  Google Scholar 

  • Bensasson D, Zhang DX, Hartl DL et al (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  PubMed  Google Scholar 

  • Cabral MJ, Almeida J, Almeida PR et al (eds) (2005) Livro Vermelho dos Vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa

  • Colli L, Cannas R, Deiana AM et al (2005) Identification of mustelids (Carnivora: Mustelidae) by mitochondrial DNA markers. Mamm Biol 70:384–389

    Article  Google Scholar 

  • Cracraft J, Feinstein J, Vaughn J et al (1998) Sorting out tigers (Panthera tigris): mitochondrial sequences, nuclear inserts, systematics, and conservation genetics. Anim Conserv 1:63–74

    Article  Google Scholar 

  • Dalén L, Gotherstrom A, Angerbjorn A (2004) Identifying species from pieces of faeces. Conserv Genet 5:109–111

    Article  Google Scholar 

  • Davison A, Birks JDS, Griffiths HI et al (1999) Hybridization and the phylogenetic relationship between polecats and domestic ferrets in Britain. Biol Conserv 87:155–162

    Article  Google Scholar 

  • Davison A, Griffiths HI, Brookes RC et al (2000) Mitochondrial DNA and palaeontological evidence for the origins of endangered European mink, Mustela lutreola. Anim Conserv 4:345–355

    Article  Google Scholar 

  • Davison A, Birks JDS, Brookes RC et al (2001) Mitochondrial phylogeography and population history of pine martens Martes martes compared with polecats Mustela putorius. Mol Ecol 10:2479–2488

    Article  PubMed  CAS  Google Scholar 

  • Davison A, Birks JDS, Brookes RC et al (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257:141–143

    Article  Google Scholar 

  • Delisle I, Strobeck C (2002) Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol Biol Evol 19:357–361

    PubMed  CAS  Google Scholar 

  • Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Ferrando A, Ponsa M, Marmi J et al (2004) Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia. J Hered 95:430–435

    Article  PubMed  CAS  Google Scholar 

  • Foran DR, Crooks KR, Minta SC (1997a) Species identification from scat: an unambiguous genetic method. Wildl Soc B 25:835–839

    Google Scholar 

  • Foran DR, Minta SC, Heinemeyer KS (1997b) DNA-based analysis of hair to identify species and individuals for population research and monitoring. Wildl Soc B 25:840–847

    Google Scholar 

  • Frantz AC, Schaul M, Pope LC et al (2004) Estimating population size by genotyping remotely plucked hair: the Eurasian badger. J Appl Ecol 41:985–995

    Article  Google Scholar 

  • Frantzen MAJ, Silk JB, Ferguson JWH et al (1998) Empirical evaluation of preservation methods for faecal DNA. Mol Ecol 7:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Frati F, Hartl GB, Lovari S et al (1998) Quaternary radiation and genetic structure of the red fox Vulpes vulpes in the Mediterranean Basin, as revealed by allozymes and mitochondrial DNA. J Zool 245:43–52

    Article  Google Scholar 

  • Gese EM (2001) Monitoring of terrestrial carnivore populations. In: Gittleman JL, Funk SM, MacDonald DW, Wayne RK (eds) Carnivore conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Gómez-Moliner BJ, Cabria MT, Rubines J et al (2004) PCR-RFLP identification of mustelids species: European mink (Mustela lutreola), American mink (M. vison), and polecat (M. putorius) by analysis of excremental DNA. J Zool 262:311–316

    Article  Google Scholar 

  • Hansen MM, Jacobsen L (1999) Identification of mustelids species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples. J Zool 247:177–181

    Article  Google Scholar 

  • Ishiguro N, Nakajima A, Horiuchi M et al (2002) Multiple nuclear pseudogenes of mitochondrial DNA exist in the canine genome. Mamm Genome 13:365–372

    Article  PubMed  Google Scholar 

  • Johnson WE, Godoy JA, Palomares F et al (2004) Phylogenetic and phylogeographic analysis of Iberian lynx populations. J Hered 95:19–28

    Article  PubMed  CAS  Google Scholar 

  • Kohn MH, York EC, Kamradt DA et al (1999) Estimating population size by genotyping faeces. Proc R Soc B Biol Sci 266:657–663

    Article  CAS  Google Scholar 

  • Kurose N, Masuda R, Tatara M (2005) Fecal DNA analysis for identifying species and sex of sympatric carnivores: a noninvasive method for conservation on the Tsushima Islands, Japan. J Hered 96:688–697

    Article  PubMed  CAS  Google Scholar 

  • Lecis R, Pierpaoli M, Biro ZS et al (2006) Bayesian analysis of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol Ecol 15:119–131

    Article  PubMed  CAS  Google Scholar 

  • Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246

    Article  PubMed  CAS  Google Scholar 

  • López-Giráldez F, Gómez-Moliner BJ, Marmi J et al (2005) Genetic distinction of American and European mink (Mustela vison and M. lutreola) and European polecat (M. putorius) hair samples by detection of a species-specific SINE and a RFLP assay. J Zool 265:405–410

    Article  Google Scholar 

  • Lucentini L, Vercillo F, Palomba A et al (2007) A PCR-RFLP method on faecal samples to distinguish Martes martes, Martes foina, Mustela putorius and Vulpes vulpes. Conserv Genet 8:757–759

    Article  CAS  Google Scholar 

  • MacDonald D, Barrett P (1993) Mammals of Britain and Europe. Harper Collins, London

    Google Scholar 

  • Michaux JR, Hardy OJ, Justy F et al (2005) Conservation genetics and population history of the threatened European mink Mustela lutreola, with an emphasis on the west European population. Mol Ecol 14:2373–2388

    Article  PubMed  CAS  Google Scholar 

  • Mills LS, Pilgrim KL, Schwartz MK et al (2000) Identifying lynx and other North American felids based on mtDNA analysis. Conserv Genet 1:285–288

    Article  CAS  Google Scholar 

  • Mukherjee S, Goyal SP, Johnsingh AJT et al (2004) The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J Zool 262:405–411

    Article  Google Scholar 

  • Mundy NI, Unitt P, Woodruff DS (1997) Skin from feet of museum specimens as a non-destructive source of DNA for avian genotyping. Auk 114:126–128

    Google Scholar 

  • Palomares F, Godoy JA, Piriz A et al (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182

    Article  PubMed  CAS  Google Scholar 

  • Palomo LJ, Gisbert J (eds) (2002) Atlas de los mamíferos terrestres de España. Dirección General de la Conservación de la Naturaleza-SECEM-SECEMU, Madrid

    Google Scholar 

  • Parson W, Pegoraro K, Niederstatter H et al (2000) Species identification by means of the cytochrome b gene. Int J Leg Med 114:23–28

    Article  CAS  Google Scholar 

  • Paxinos E, McIntosh C, Ralls K et al (1997) A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Mol Ecol 6:483–486

    Article  PubMed  CAS  Google Scholar 

  • Pertoldi C, Breyne P, Cabria MT et al (2006) Genetic structure of the European polecat (Mustela putorius) and its implication for conservation strategies. J Zool 270:102–115

    Google Scholar 

  • Pilot M, Gralak B, Goszczynski J et al (2007) A method of genetic identification of pine marten (Martes martes) and stone marten (Martes foina) and its applications to faecal samples. J Zool. 271:140–147

    Article  Google Scholar 

  • Prugh LR, Ritland CE (2005) Molecular testing of observer identification of carnivore feces in the field. Wildl Soc B 33:189–194

    Article  Google Scholar 

  • Randi E, Pierpaoli M, Beaumont M et al (2001) Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian clustering methods. Mol Biol Evol 18:1679–1693

    PubMed  CAS  Google Scholar 

  • Riddle AE, Pilgrim KL, Mills LS et al (2003) Identification of mustelids using mitochondrial DNA and non-invasive sampling. Conserv Genet 4:241–243

    Article  CAS  Google Scholar 

  • Roeder AD, Archer FI, Poinar HN et al (2004) A novel method for collection and preservation of faeces for genetic studies. Mol Ecol Notes 4:761–764

    Article  CAS  Google Scholar 

  • Rosalino LM, Torres J, Santos-Reis M (2006) A survey of helminth infection in Eurasian badgers (Meles meles) in relation to their foraging behaviour in a Mediterranean environment in southwest Portugal. Eur J Wildl Res 52:202–206

    Article  Google Scholar 

  • Sadlier LMJ, Webbon CC, Baker PJ et al (2004) Methods of monitoring red foxes Vulpes vulpes and badgers Meles meles: are field signs the answer? Mammal Rev 34:75–98

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Verardi A, Lucchini V, Randi E (2006) Detecting introgressive hybridisation between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Mol Ecol 15:2845–2855

    Article  PubMed  CAS  Google Scholar 

  • Vercillo F, Lucentini L, Mucci N et al (2004) A simple and rapid PCR-RFLP method to distinguish Martes martes and Martes foina. Conserv Genet 5:869–871

    Article  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manage 69:1419–1433

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Wan Q, Fang S (2003) Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int 131:75–78

    Article  PubMed  CAS  Google Scholar 

  • Wayne RK, Vila C (2001) Phylogeny and origin of the domestic dog. In: Ruvinsky A, Sampson J (eds) The genetics of the dog. CABI Publishing, Wallingford

    Google Scholar 

  • Woischnik M, Moraes CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885–893

    Article  PubMed  CAS  Google Scholar 

  • Zhan X, Li M, Zhang Z et al (2006) Molecular censusing doubles giant panda population estimate in a key nature reserve. Curr Biol 16:R436–R437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the carnivore ecology and conservation research group at the CBA, headed by Margarida Santos-Reis, as well as BRISA for their fundamental contributions to the collection of carnivore biological samples maintained at the institution. We are also grateful to Armando Loureiro (BTVS-PNPG, ICN, Portugal) for carnivore samples from northern Portugal; Margarida Fernandes (ICN, Portugal) and Maria da Graça Ramalhinho (MNHN, Portugal) for Iberian lynx samples; Deodália Dias, Maria do Mar Oom, Maria da Luz Mathias, Octávio Paulo and Maria Manuela Coelho, for samples of prey species; Francisco Palomares and Ana Piriz (Doñana Biological Station), Benjamín Gómez-Moliner (University of the Basque Country), Márcia Barbosa (University of Extremadura), Filipa Alves (University of Barcelona), Trinidad Pérez (University of Oviedo) for samples from Spain; Miia Varanka (Ranua Wildlife Park), Hanna Sitek (Poznan Zoo), Alexandra Tsekhanskaya (Kharkiv Zoo) and Irina Skiba (St. Petersburg Zoo) for providing additional valuable samples. We acknowledge financial support from the Fundação para a Ciência e a Tecnologia, research project POCTI/2000/BSE/407888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, C.A., Ginja, C., Pereira, I. et al. Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula. Conserv Genet 9, 681–690 (2008). https://doi.org/10.1007/s10592-007-9364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9364-5

Keywords

Navigation