Skip to main content
Log in

Two-scale convergence of a class of r-forms: rewriting of periodic homogenization of Maxwell’s equations

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

Periodic homogenization is studied for Maxwell’s equations with the linear conductivity. After generalizing the sequential compactness theorem of Nguetseng (SIAM J Math Anal 20:608–623, 1989), repeated to a sequence of r-differential forms of \(L^{1}\)-coefficients defined on an open set \(\Omega \) of \({\mathbb {R}}^N\) with \(r \in \{ 0, 1, \ldots , N \},\) it is shown that the sequence of solutions to a class of reduced system converges to the solution of a homogenized reduced Maxwell’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  3. Amirat, Y., Sheluklin, V.: Homogenization of time harmonic Maxwell equations and the frequency dispersion effect. J. Math. Pures Appl. 95, 420–443 (2011)

    Article  MathSciNet  Google Scholar 

  4. Back, A., Frenod, E.: Geometric two-scale convergence on manifold and applications to the Vlasov equation. DCDS-S 8, 223–241 (2015). Special Issue on “Numerical Methods Based on Two-Scale Convergence and Homogenization”

  5. Bertin, J., Demailly, J.-P., Illusie, L., Peters, C.: Introduction à la théorie de Hodge. Panoramas et synthèses. Société mathématique de France (2018)

  6. Bouchitté, G., Schweizer, B.: Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8, 717–750 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bourbaki, N.: Intégration, Chapitres 1–4. Hermann, Paris (1966)

  8. Bourbaki, N.: Intégration, Chapitre 5. Hermann, Paris (1967)

  9. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  Google Scholar 

  10. Giovanni, C.: Oscillator spacetimes are Ricci solitons. Nonlinear Anal. 140, 254–269 (2016)

    Article  MathSciNet  Google Scholar 

  11. Joel, F.T., Nnang, H.: Two-scale convergence of integral functional with convex, periodic and nonstandard growth. Acta Appl. Math. 121, 175–196 (2012)

  12. Joel, F.T., Nnang, H.: Stochastic-periodic homogenization of Maxwell’s equation with linear and periodic conductivity. Acta Math. Sin. 33, 117–152 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kristensson, G., Wellander, N.: Homogenization of the Maxwell equations at fixed frequency. SIAM J. Appl. Math. 64, 170–195 (2003)

    Article  MathSciNet  Google Scholar 

  14. Malik, R.P.: Hodge duality operation and its physical applications on supermanifolds. Int. J. Mod. Phys. A 21, 3307–3336 (2006)

    Article  MathSciNet  Google Scholar 

  15. Markowich, P..A., Poupaud, F.: The Maxwell equations in a periodic medium: homogenization of the energy density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 301–324 (1996)

    MathSciNet  Google Scholar 

  16. Nguetseng, G.: A general convergent result for functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    Article  MathSciNet  Google Scholar 

  17. Nguetseng, G.: Homogenization structures and applications I. Z. Anal. Andwend 22, 203–221 (2003)

    MathSciNet  Google Scholar 

  18. Nguetseng, G.: \(\Sigma \)-convergence of parabolic differential operators. In: Multiple Scales in Bio-mathematics, Mechanics, Physics and Numerics. Gakuto International Series. Mathematical Sciences and Applications, vol. 31, pp. 93–132. Gakkotosho, Tokyo (2009)

  19. Pak, H.C.: Geometric two-scale convergence on forms and its applications to Maxwell’s equations. Proc. R. Soc. Edinb. Sect. A Math. 135, 133–147 (2005)

    Article  MathSciNet  Google Scholar 

  20. Sheluklin, V.V., Terentev, S.A.: Frequency dispersion of dielectric permittivity and conductivity of rocks via two-scale convergence of Maxwell’s equations. Prog. Electromagn. Res. 14, 175–202 (2009)

    Article  Google Scholar 

  21. Sjöberg, D., Engström, C., Kristensson, G., Wall, D.J.N., Wellander, N.: A Floquet–Bloch decomposition of Maxwell’s equations applied to homogenization. SIAM Multiscale Model. Simul. 4, 149–171 (2005)

    Article  MathSciNet  Google Scholar 

  22. Thiébaut, C.L.: Théorie des fonctions holomorphes de plusieurs variables. CNRS Editions, Paris (1997)

    Book  Google Scholar 

  23. Wellander, N.: Homogenization of the Maxwell equations: case I. Linear theory. Appl. Math. 46, 29–51 (2001)

    Article  MathSciNet  Google Scholar 

  24. Wellander, N.: Homogenization of the Maxwell equations: case II. Nonlinear conductivity. Appl. Math. 47, 255–283 (2002)

    Article  MathSciNet  Google Scholar 

  25. Willmore, T.J.: Riemannian Geometry. Oxford University Press Inc., New York (1993)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank particularly authors of [12] for their fantastic work which permits to simplify some fundamental results and computational operations of the present work. We thank the Editor and reviewers for their handling of the review process.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Nnang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this paper.

Additional information

Alphonse Mba, Marcial Nguemfouo and Hubert Nnang contributed equally to this work.

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mba, A., Nguemfouo, M. & Nnang, H. Two-scale convergence of a class of r-forms: rewriting of periodic homogenization of Maxwell’s equations. Partial Differ. Equ. Appl. 5, 17 (2024). https://doi.org/10.1007/s42985-024-00286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-024-00286-y

Keywords

Mathematics Subject Classification

Navigation