Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods part I: Linear problems. J. Sci. Comput. 85(2), 1–29 (2020). https://doi.org/10.1007/s10915-020-01349-z. arxiv:1912.08108 [math.NA]
Alefeld, G., Potra, F.A., Shi, Y.: Algorithm 748: Enclosing zeros of continuous functions. ACM Trans. Math. Softw. (TOMS) 21(3), 327–344 (1995). https://doi.org/10.1145/210089.210111
Article
MATH
Google Scholar
Álvarez, J., Durán, A.: Error propagation when approximating multi-solitons: The KdV equation as a case study. Applied Mathematics and Computation 217(4), 1522–1539 (2010). https://doi.org/10.1016/j.amc.2009.06.033
MathSciNet
Article
MATH
Google Scholar
Álvarez, J., Durán, A.: On the preservation of invariants in the simulation of solitary waves in some nonlinear dispersive equations. Commun. Nonlinear Sci. Numer. Simul. 17(2), 637–649 (2012). https://doi.org/10.1016/j.cnsns.2011.06.019
MathSciNet
Article
MATH
Google Scholar
Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.E.: Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems. Adv. Differ. Equations 14(1/2), 27–53 (2009)
MathSciNet
MATH
Google Scholar
Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of Boussinesq systems of the Bona-Smith family. Appl. Numer. Math. 60(4), 314–336 (2010). https://doi.org/10.1016/j.apnum.2009.03.002
MathSciNet
Article
MATH
Google Scholar
Araújo, A., Durán, A.: Error propagation in the numerical integration of solitary waves. The regularized long wave equation. Appl. Numer. Math. 36(2–3), 197–217 (2001). https://doi.org/10.1016/S0168-9274(99)00148-8
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia, : A fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671. arxiv:1411.1607 [cs.MS]
Bona, J.L., Chen, M., Saut, J.C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: derivation and linear theory. J. Nonlinear Sci. 12(4),(2002). https://doi.org/10.1007/s00332-002-0466-4
Bona, J.L., Chen, M., Saut, J.C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory. Nonlinearity 17(3), 925 (2004). https://doi.org/10.1088/0951-7715/17/3/010
MathSciNet
Article
MATH
Google Scholar
Bona, J.L., Dougalis, V.A., Karakashian, O.A.: Fully discrete Galerkin methods for the Korteweg-de Vries equation. Comput. Math. Appl. 12(7), 859–884 (1986). https://doi.org/10.1016/0898-1221(86)90031-3
MathSciNet
Article
MATH
Google Scholar
Calvo, M., Laburta, M., Montijano, J.I., Rández, L.: Error growth in the numerical integration of periodic orbits. Math. Comput. Simul. 81(12), 2646–2661 (2011). https://doi.org/10.1016/j.matcom.2011.05.007
MathSciNet
Article
MATH
Google Scholar
Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993). https://doi.org/10.1103/PhysRevLett.71.1661
MathSciNet
Article
MATH
Google Scholar
Cano, B., Sanz-Serna, J.: Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems. IMA J. Numer. Anal. 18(1), 57–75 (1998). https://doi.org/10.1093/imanum/18.1.57
MathSciNet
Article
MATH
Google Scholar
Cano, B., Sanz-Serna, J.M.: Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems. SIAM J. Numer. Anal. 34(4), 1391–1417 (1997). https://doi.org/10.1137/S0036142995281152
MathSciNet
Article
MATH
Google Scholar
Chen, T., Shu, C.W.: Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes. CSIAM Trans. Appl. Math. 1(1), 1–52 (2020). https://doi.org/10.4208/csiam-am.2020-0003
Article
Google Scholar
Clawpack Development Team: Clawpack software, version 5.6.1 (2019). https://doi.org/10.5281/zenodo.3528429. http://www.clawpack.org
De Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation. Numer. Math. 75(4), 421–445 (1997). https://doi.org/10.1007/s002110050247
MathSciNet
Article
MATH
Google Scholar
Degasperis, A., Holm, D.D., Hone, A.N.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133(2), 1463–1474 (2002). https://doi.org/10.1023/A:1021186408422
MathSciNet
Article
Google Scholar
Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations, CWI Monographs, vol. 2. North-Holland, Amsterdam (1984)
MATH
Google Scholar
Durán, A.: Time behaviour of the error when simulating finite-band periodic waves. The case of the KdV equation. J. Comput. Phys. 227(3), 2130–2153 (2008). https://doi.org/10.1016/j.jcp.2007.10.016
Durán, A., López-Marcos, M.: Numerical behaviour of stable and unstable solitary waves. Appl. Numer. Math. 42(1–3), 95–116 (2002). https://doi.org/10.1016/S0168-9274(01)00144-1
MathSciNet
Article
MATH
Google Scholar
Durán, A., López-Marcos, M.: Conservative numerical methods for solitary wave interactions. Journal of Physics A: Mathematical and General 36(28), 7761 (2003). https://doi.org/10.1088/0305-4470/36/28/306
MathSciNet
Article
MATH
Google Scholar
Durán, A., Sanz-Serna, J.: The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20(2), 235–261 (2000). https://doi.org/10.1093/imanum/20.2.235
Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions. Geometric theory. Nonlinearity 11(6), 1547 (1998). https://doi.org/10.1088/0951-7715/11/6/008
MathSciNet
Article
MATH
Google Scholar
Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016
MathSciNet
Article
MATH
Google Scholar
Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230(14), 5587–5609 (2011). https://doi.org/10.1016/j.jcp.2011.03.042
MathSciNet
Article
MATH
Google Scholar
Fornberg, B.: On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12(4), 509–528 (1975). https://doi.org/10.1137/0712040
MathSciNet
Article
MATH
Google Scholar
Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301
Article
Google Scholar
Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144
MathSciNet
Article
MATH
Google Scholar
Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013
MathSciNet
Article
MATH
Google Scholar
Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016). https://doi.org/10.1016/j.amc.2015.07.014
MathSciNet
Article
MATH
Google Scholar
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, New York (2013)
MATH
Google Scholar
Hicken, J.E.: Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J. Sci. Comput. 82(2), 50 (2020). https://doi.org/10.1007/s10915-020-01154-8
MathSciNet
Article
MATH
Google Scholar
Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016). https://doi.org/10.1137/15M1038360
MathSciNet
Article
MATH
Google Scholar
Holm, D.D., Hone, A.N.: Nonintegrability of a fifth-order equation with integrable two-body dynamics. Theor. Math. Phys. 137(1), 1459–1471 (2003). https://doi.org/10.1023/A:1026060924520
Article
MATH
Google Scholar
Hunter, J.D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
Article
Google Scholar
Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003). https://doi.org/10.1016/S0168-9274(02)00138-1
MathSciNet
Article
MATH
Google Scholar
Ketcheson, D.I.: Relaxation Runge-Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019). https://doi.org/10.1137/19M1263662. arxiv:1905.09847 [math.NA]
Ketcheson, D.I., LeVeque, R.J.: Shock dynamics in layered periodic media. Commun. Math. Sci. 10(3), 859–874 (2012). https://doi.org/10.4310/CMS.2012.v10.n3.a7.. arxiv:1105.2892 [math-ph]
MathSciNet
Article
MATH
Google Scholar
Ketcheson, D.I., Mandli, K., Ahmadia, A.J., Alghamdi, A., Quezada de Luna, M., Parsani, M., Knepley, M.G., Emmett, M.: Pyclaw: Accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34(4), C210–C231 (2012). https://doi.org/10.1137/110856976
Ketcheson, D.I., Parsani, M., LeVeque, R.J.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35(1), A351–A377 (2013). https://doi.org/10.1137/110830320
MathSciNet
Article
MATH
Google Scholar
Kopriva, D.A., Nordström, J., Gassner, G.J.: Error boundedness of discontinuous Galerkin spectral element approximations of hyperbolic problems. J. Sci. Comput. 72(1), 314–330 (2017). https://doi.org/10.1007/s10915-017-0358-2
MathSciNet
Article
MATH
Google Scholar
Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972). https://doi.org/10.3402/tellusa.v24i3.10634
MathSciNet
Article
Google Scholar
Lenells, J.: Traveling wave solutions of the Camassa-Holm equation. J. Differ> Equations 217(2), 393–430 (2005). https://doi.org/10.1016/j.jde.2004.09.007
MathSciNet
Article
MATH
Google Scholar
LeVeque, R.J., Yong, D.H.: Solitary waves in layered nonlinear media. SIAM J. Appl. Math. 63(5), 1539–1560 (2003). https://doi.org/10.1137/S0036139902408151
MathSciNet
Article
MATH
Google Scholar
Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2, e68 (2016). https://doi.org/10.7717/peerj-cs.68
Article
Google Scholar
Mitsotakis, D., Ranocha, H., Ketcheson, D.I., Süli, E.: A conservative fully-discrete numerical method for the regularized shallow water wave equations. SIAM J. Sci. Comput. 42,(2021). https://doi.org/10.1137/20M1364606. arXiv:2009.09641 [math.NA]
Momoniat, E.: A modified equation approach to selecting a nonstandard finite difference scheme applied to the regularized long wave equation. Abstr. Appl. Anal. 2014 (2014). https://doi.org/10.1155/2014/754543
Noether, E.: Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Klasse 1918, 235–257 (1918). http://eudml.org/doc/59024
Nordström, J.: Error bounded schemes for time-dependent hyperbolic problems. SIAM J. Sci. Comput. 30(1), 46–59 (2007). https://doi.org/10.1137/060654943
MathSciNet
Article
MATH
Google Scholar
Nordström, J., Björck, M.: Finite volume approximations and strict stability for hyperbolic problems. Appl. Numer. Math. 38(3), 237–255 (2001). https://doi.org/10.1016/S0168-9274(01)00027-7
MathSciNet
Article
MATH
Google Scholar
Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45(4), 453–473 (2003). https://doi.org/10.1016/S0168-9274(02)00239-8
MathSciNet
Article
MATH
Google Scholar
Öffner, P.: Error boundedness of correction procedure via reconstruction/flux reconstruction (2018). arxiv:1806.01575 [math.NA]
Öffner, P., Ranocha, H.: Error boundedness of discontinuous Galerkin methods with variable coefficients. J. Sci. Comput. 79(3), 1572–1607 (2019). https://doi.org/10.1007/s10915-018-00902-1. arxiv:1806.02018 [math.NA]
Petviashvili, V.: Equation of an extraordinary soliton (ion acoustic wave packet dispersion in plasma). Sov. J. Plasma Phys. 2, 257 (1976)
Google Scholar
Quezada de Luna, M., Ketcheson, D.I.: Solitary water waves created by variations in bathymetry. J. Fluid Mech. 917, A45 (2021)
Rackauckas, C., Nie, Q.: DifferentialEquations.jl - A performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1), 15 (2017). https://doi.org/10.5334/jors.151
Ranocha, H.: Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9. arxiv:1609.08029 [math.NA]
Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)
Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021. arxiv:1705.10541 [math.NA]
Ranocha, H.: Mimetic properties of difference operators: Product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numer. Math. 59(2), 547–563 (2019). https://doi.org/10.1007/s10543-018-0736-7. arxiv:1805.09126 [math.NA]
Ranocha, H.: SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties. J. Open Source Softw. 6(64), 3454 (2021). https://doi.org/10.21105/joss.03454. https://github.com/ranocha/SummationByPartsOperators.jl
Ranocha, H., Dalcin, L., Parsani, M.: Fully-discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations. Comput. Math. Appl. 80(5), 1343–1359 (2020). https://doi.org/10.1016/j.camwa.2020.06.016. arxiv:2003.08831 [math.NA]
Ranocha, H., Ketcheson, D.I.: Relaxation Runge-Kutta methods for Hamiltonian problems. J. Sci. Comput. 84(1),(2020). https://doi.org/10.1007/s10915-020-01277-y. arxiv:2001.04826 [math.NA]
Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes. Numer. Math. 146, 875–906 (2020). https://doi.org/10.1007/s00211-020-01158-4. arxiv:2003.03012 [math.NA]
Ranocha, H., Quezada de Luna, M., Ketcheson, D.I.: Dispersive-wave-error-growth-notebooks. On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations (2021). https://doi.org/10.5281/zenodo.4540467. https://github.com/ranocha/Dispersive-wave-error-growth-notebooks
Ranocha, H., Mitsotakis, D., Ketcheson, D.I.: A broad class of conservative numerical methods for dispersive wave equations. Commun. Comput. Phys. 29(4), 979–1029 (2021). https://doi.org/10.4208/cicp.OA-2020-0119. arxiv:2006.14802 [math.NA]
Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009. arxiv:1511.02052 [math.NA]
Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge-Kutta methods: Fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42(2), A612–A638 (2020). https://doi.org/10.1137/19M1263480. arxiv:1905.09129 [math.NA]
Richtmyer, R.D., Morton, K.W.: Difference Methods for Boundary-Value Problems. Wiley, New York, London, Sydney (1967)
MATH
Google Scholar
Sanz-Serna, J.M.: An explicit finite-difference scheme with exact conservation properties. J. Comput. Phys. 47(2), 199–210 (1982). https://doi.org/10.1016/0021-9991(82)90074-2
MathSciNet
Article
MATH
Google Scholar
Sanz-Serna, J.M., Manoranjan, V.: A method for the integration in time of certain partial differential equations. J. Comput. Phys. 52(2), 273–289 (1983). https://doi.org/10.1016/0021-9991(83)90031-1
MathSciNet
Article
MATH
Google Scholar
Shima, N., Kuya, Y., Tamaki, Y., Kawai, S.: Preventing spurious pressure oscillations in split convective form discretization for compressible flows. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.110060
Article
Google Scholar
Strand, B.: Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110(1), 47–67 (1994). https://doi.org/10.1006/jcph.1994.1005
MathSciNet
Article
MATH
Google Scholar
Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031
MathSciNet
Article
MATH
Google Scholar
Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3
MathSciNet
Article
MATH
Google Scholar
Tsitouras, C.: Runge-Kutta pairs of order 5 (4) satisfying only the first column simplifying assumption. Comput. Math. Appl. 62(2), 770–775 (2011). https://doi.org/10.1016/j.camwa.2011.06.002
MathSciNet
Article
MATH
Google Scholar
Wang, G., Yong, X., Huang, Y., Tian, J.: Symmetry, pulson solution, and conservation laws of the Holm–Hone equation. Adv. Math. Phys. 2019,(2019). https://doi.org/10.1155/2019/4364108
Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 299(1456), 6–25 (1967). https://doi.org/10.1098/rspa.1967.0119
Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017). https://doi.org/10.1016/j.jcp.2017.03.036
MathSciNet
Article
MATH
Google Scholar
Winters, A.R., Moura, R.C., Mengaldo, G., Gassner, G.J., Walch, S., Peiro, J., Sherwin, S.J.: A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372, 1–21 (2018). https://doi.org/10.1016/j.jcp.2018.06.016
MathSciNet
Article
MATH
Google Scholar