Skip to main content
Log in

Regularity properties of the cubic biharmonic Schrödinger equation on the half line

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this paper we study the regularity properties of the cubic biharmonic Schrödinger equation posed on the right half line. We prove local well-posedness and obtain a smoothing result in the low-regularity spaces on the half line. In particular we prove that the nonlinear part of the solution on the half line is smoother than the initial data obtaining a full derivative gain in certain cases. Moreover, in the defocusing case, we establish global well-posedness and global smoothing in the higher order regularity spaces by making use of the global-wellposedness result of Özsarı and Yolcu (Commun Pure Appl Phys 18(6):3285–3316, 2019) in the energy space. Also this paper improves the well-posedness result of Özsarı and Yolcu (Commun Pure Appl Phys 18(6):3285–3316, 2019) in the case of cubic nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, K., Hayashi, N., Naumkin, P.I.: Global existence of small solutions for the fourth-order nonlinear Schrödinger equation. NoDEA Nonlinear Diff. Equ. Appl. 23(65), 1–18 (2016)

    MATH  Google Scholar 

  2. Bona, J.L., Sun, S.M., Zhang, B.Y.: Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations. J. de Math. Pures et Appl. 109, 1–66 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations. GAFA 3, 209–262 (1993)

    MATH  Google Scholar 

  4. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: the KdV equation. GAFA 3, 209–262 (1993)

    MATH  Google Scholar 

  5. Bourgain, J.: Global solutions of nonlinear Schrödinger equations. AMS Colloq. Publ. 46 (1998)

  6. Chousionis, V., Erdoğan, M.B., Tzirakis, N.: Fractal solutions of linear and nonlinear dispersive partial differential equations. Proc. Lond. Math. Soc. 110(3), 543–564 (2015)

    Article  MathSciNet  Google Scholar 

  7. Christ, M.: Power Series Solution of a Nonlinear Schrödinger Equation in Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., vol. 163, pp. 131–155. Princeton Univ. Press, Princeton (2007)

    Google Scholar 

  8. Compaan, E., Tzirakis, N.: Well-posedness and nonlinear smoothing for the good Boussinesq equation on the half-line. J. Differ. Equ. 262, 5824–5859 (2017)

    Article  MathSciNet  Google Scholar 

  9. Demirbas, S., Erdoğan, M.B., Tzirakis, N.: Existence and uniqueness theory for the fractional Schrödinger equation on the torus. arXiv:1312.5249

  10. Dinh, V.D.: On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation. Bull. Belg. Math. Soc. Simon Stevin 25(3), 415–437 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. Ser. A 369, 105–114 (1979)

    Article  Google Scholar 

  12. Erdoğan, M.B., Tzirakis, N.: Global smoothing for the periodic KdV evolution. Int. Math. Res. Not. 20, 4589–4614 (2013)

    Article  MathSciNet  Google Scholar 

  13. Erdoğan, M.B., Tzirakis, N.: Smoothing and global attractors for the Zakharov system on the torus. Anal. PDE 6–3, 723–750 (2013)

    Article  MathSciNet  Google Scholar 

  14. Erdoğan, M.B., Tzirakis, N.: Talbot effect for the cubic nonlinear Schrödinger equation on the torus. Math. Res. Lett. 20, 1081–1090 (2013)

    Article  MathSciNet  Google Scholar 

  15. Erdoğan, M.B., Tzirakis, N.: Dispersive Partial Differential Equations: Wellposedness and Applications, Cambridge Student Texts, p. 200. Cambridge University Press, New York (2016)

    Book  Google Scholar 

  16. Erdoğan, M.B., Tzirakis, N.: Regularity properties of the cubic nonlinear Schrödinger equation on the half line. J. Funct. Anal. 271(9), 2539–2568 (2016)

    Article  MathSciNet  Google Scholar 

  17. Erdoğan, M.B., Tzirakis, N.: Regularity properties of the Zakharov system on the half line. Commun. Partial Differ. Equ. 42(7), 1121–1149 (2017)

    Article  MathSciNet  Google Scholar 

  18. Filho, R.D.A.C., Cavalcante, M., Gallego, F.A.: Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane. Pac. J. Math. 309(1), 35–70 (2020)

    Article  Google Scholar 

  19. Fukumoto, Y.: Motion of a curved vortex filament: higher order asymptotics. In: Proc. IUTAM Symp. Geom. Stat. Turbul., pp. 211–216 (2001)

  20. Hao, C., Hsiao, L., Wang, B.: Wellposedness for the fourth order nonlinear Schrödinger equations. J. Math. Anal. Appl. 320, 246–265 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hao, C., Hsiao, L., Wang, B.: Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces. J. Math. Anal. Appl. 328, 58–83 (2007)

    Article  MathSciNet  Google Scholar 

  22. Hayashi, N., Naumkin, P.I.: Factorization technique for the fourth-order nonlinear Schrödinger equation. Z. Angew. Math. Phys. 66, 2343–2377 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hayashi, N., Naumkin, P.I.: Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case. Nonlinear Anal. 116, 112–131 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hayashi, N., Naumkin, P.I.: On the inhomogeneous fourth-order nonlinear Schrödinger equation. J. Math. Phys. 56(9), 25 (2015)

    Article  Google Scholar 

  25. Hirayama, H., Okamoto, M.: Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Commun. Pure Appl. Anal. 15(3), 831–851 (2016)

    Article  MathSciNet  Google Scholar 

  26. Holmer, J.: The initial-boundary value problem for the 1-d nonlinear Schrödinger equation on the half-line. Differ. Integral Equ. 18, 647–668 (2005)

    MATH  Google Scholar 

  27. Hu, B., Zhang, L., Xia, T., Zhang, N.: Initial-boundary value problems for a fourth-order dispersive nonlinear Schrödinger equation in optics and magnetic mechanics. arXiv:2003.13899

  28. Huo, Z., Jia, Y.: The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament. J. Differ. Equ. 214, 1–35 (2005)

    Article  Google Scholar 

  29. Ivanov, B.A., Kosevich, A.M.: Stable three-dimensional small-amplitude soliton in magnetic materials. So. J. Low Temp. Phys. 9, 439–442 (1983)

    Google Scholar 

  30. Karpman, V.I.: Stabilization of soliton instabilities by higher order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 53(2), 1336–1339 (1996)

    Article  Google Scholar 

  31. Karpman, V.I., Shagalov, A.G.: Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys. D 144, 194–210 (2000)

    Article  MathSciNet  Google Scholar 

  32. Kenig, C., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–69 (1991)

    Article  MathSciNet  Google Scholar 

  33. Keraani, S., Vargas, A.: A smoothing property for the \(L^2\)-critical NLS equations and an application to blowup theory. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 745–762 (2009)

    Article  MathSciNet  Google Scholar 

  34. Özsarı, T., Yolcu, N.: The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Commun. Pure Appl. Anal. 18(6), 3285–3316 (2019)

    Article  MathSciNet  Google Scholar 

  35. Pausader, B.: The cubic fourth-order Schrödinger equation. J. Funct. Anal. 256, 2473–2517 (2009)

    Article  MathSciNet  Google Scholar 

  36. Seong, K.: Well-Posedness and Ill-Posedness for the fourth order cubic nonlinear Schrödinger equation in negative Sobolev spaces. arXiv:1911.03253

  37. Tao, T.: Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, Local and global analysis (2006)

  38. Turitsyn, S.K.: Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons. Teoret. Mat. Fiz. 64, 226–232 (1985). (in Russian)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank his Ph.D advisor T. Burak Gürel for many helpful suggestions and comments also thank Eduardo Teixeira for careful reading of the manuscript and many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Başakoğlu.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

The author is partially supported by the TÜBİTAK Grant 118F152 and the Boğaziçi University Research Fund Grant BAP-14081.

Appendix

Appendix

In this section, we reserve some useful inequalities to be used in the text when necessary. Firstly we start with the lemma which is a consequence of the proof of Theorem 1.3 in [34].

Lemma 7.1

when \(\mu =1\) \((\text {defocusing nonlinearity})\), the solutions of the Eq. (1) satisfy the following a priori estimate

$$\begin{aligned} \left\Vert u\right\Vert _{H^2({\mathbb {R}}^+)}\le C(\left\Vert g\right\Vert _{H^2},\left\Vert h_1\right\Vert _{H^1},\left\Vert h_2\right\Vert _{H^1}). \end{aligned}$$

Next Lemma is useful in the proofs of Proposition 4.6 and Proposition 4.7.

Lemma 7.2

For \(m,n,k\in {\mathbb {R}}\) we have

$$\begin{aligned} |m^4-n^4+k^4-(m-n+k)^4|\gtrsim |m-n||n-k|(m^2+n^2+k^2). \end{aligned}$$

Proof

Let \(g(m,n,k):=m^4-n^4+k^4-(m-n+k)^4\). Then

$$\begin{aligned} g(m,n,k)&=(m-n)\big [(m^2+n^2)(m+n)-(m-n)^3-4(m-n)^2k-6(m-n)k^2-4k^3\big ]\\&=(m-n)(n-k)\big [4m^2+2n^2+4k^2-2mn-2nk\big ]\\&=(m-n)(n-k)\Big [\frac{5}{2}(m+n)^2+m^2+k^2+2(n-\frac{1}{2}m-\frac{1}{2}k)^2\Big ] \end{aligned}$$

which gives the desired estimate. \(\square \)

Lemma 7.3

(See [6]) For \(-\frac{1}{2}\le s \le \frac{1}{2}\), we have

$$\begin{aligned} \left\Vert fg\right\Vert _{H^s}\lesssim \left\Vert f\right\Vert _{H^{\frac{1}{2}+}}\left\Vert g\right\Vert _{H^s} \end{aligned}$$

Finally we have the following lemmas we use throughout the text. For proofs of the first and the second of these, see [13] and [16] respectively.

Lemma 7.4

If \(\beta \ge \gamma \ge 0\) and \(\beta +\gamma >1\) then

$$\begin{aligned} \int _{{\mathbb {R}}}\frac{dx}{\langle x-a_1\rangle ^{\beta } \langle x-a_2\rangle ^{\gamma }}\lesssim \langle a_1-a_2\rangle ^{-\gamma }\varphi _{\beta }(a_1-a_2) \end{aligned}$$

where

$$\begin{aligned} \varphi _{\beta }(a)=\sum _{|n|\le |a|}\frac{1}{\langle n \rangle ^{\beta }} \sim \left\{ \begin{array}{ll} 1 &{}\quad \beta >1 \\ \log (1+\langle a\rangle ) &{} \quad \beta =1 \\ \langle a \rangle ^{1-\beta } &{}\quad \beta <1. \end{array}\right. \end{aligned}$$

Lemma 7.5

For fixed \(\rho \in (\frac{1}{2},1)\), we have

$$\begin{aligned} \int \frac{1}{\langle x\rangle ^{\rho }\sqrt{|x-a|}}dx\lesssim \frac{1}{\langle a\rangle ^{\rho -\frac{1}{2}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başakoğlu, E. Regularity properties of the cubic biharmonic Schrödinger equation on the half line. Partial Differ. Equ. Appl. 2, 52 (2021). https://doi.org/10.1007/s42985-021-00106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-021-00106-7

Keywords

Mathematics Subject Classification

Navigation