Skip to main content
Log in

Nodal bubble tower solutions to slightly subcritical elliptic problems with Hardy terms

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We study the possible blow-up behavior of solutions to the slightly subcritical elliptic problem with Hardy term

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u-\mu \frac{u}{|x|^2} = |u|^{2^{*}-2-\varepsilon }u &{} \text {in } \Omega , \\ u = 0&{} \text {on } \partial \Omega , \end{array}\right. } \end{aligned}$$

in a bounded domain \(\Omega \subset {\mathbb {R}}^N (N\ge 7)\) with \(0\in \Omega\), as \(\mu ,\epsilon \rightarrow 0^+\). In [6], we obtained the existence of nodal solutions that blow up positively at the origin and negatively at a different point as \(\mu =O(\epsilon ^\alpha )\) with \(\alpha >\frac{N-4}{N-2}\), \(\epsilon \rightarrow 0^+\). Here we prove the existence of nodal bubble tower solutions, i.e. superpositions of bubbles of different signs, all blowing up at the origin but with different blow-up order, as \(\mu =O(\epsilon )\), \(\epsilon \rightarrow 0^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, Th: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  Google Scholar 

  2. Bahri, A., Li, Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. Var. Partial Differ. Equ. 3, 67–93 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., Micheletti, A., Pistoia, A.: On the existence and the profile of nodal solutions of elliptic equations involving critical growth. Calc. Var. Partial Differ. Equ. 26, 265–282 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., D’Aprile, T., Pistoia, A.: Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 1027–1047 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., D’Aprile, T., Pistoia, A.: On the profile of sign-changing solutions of an almost critical problem in the ball. Bull. Lond. Math. Soc. 45, 1246–1258 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Guo, Q.: Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term. Adv. Nonlinear Stud. 17, 55–85 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MathSciNet  Google Scholar 

  8. Brézis, H., Peletier, L.A.: Asymptotics for Elliptic Equations Involving Critical Growth, Partial Differential Equations and the Calculus of Variations, Vol. I, Progr. Nonlinear Diff. Equ. Appl., vol. 1, pp. 149–192. Birkhäuser, Boston (1989)

    Google Scholar 

  9. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 205, 521–537 (2004)

    Article  MathSciNet  Google Scholar 

  10. Cao, D., Peng, S.: A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 193, 424–434 (2003)

    Article  MathSciNet  Google Scholar 

  11. Catrina, F., Wang, Z.-Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    Article  MathSciNet  Google Scholar 

  12. del Pino, M., Dolbeault, J., Musso, M.: “Bubble-tower” radial solutions in the slightly supercritical Brezis–Nirenberg problem. J. Differ. Equ. 193(2), 280–306 (2003)

    Article  MathSciNet  Google Scholar 

  13. Ekeland, I., Ghoussoub, N.: Selected new aspects of the calculus of variations in the large. Bull. Am. Math. Soc. (N.S.) 39(2), 207–265 (2002)

    Article  MathSciNet  Google Scholar 

  14. Felli, V., Pistoia, A.: Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth. Commun. Partial Differ. Equ. 31, 21–56 (2006)

    Article  MathSciNet  Google Scholar 

  15. Felli, V., Terracini, S.: Fountain-like solutions for nonlinear elliptic equations with critical growth and Hardy potential. Commun. Contemp. Math. 7, 867–904 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ferrero, A., Gazzola, F.: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 177, 494–522 (2001)

    Article  MathSciNet  Google Scholar 

  17. Flucher, M., Wei, J.: Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots. Manuscripta Math. 94, 337–346 (1997)

    Article  MathSciNet  Google Scholar 

  18. Ghoussoub, N., Robert, F.: Sobolev inequalities for the Hardy–Schrödinger operator: extremals and critical dimensions. Bull. Am. Math. Soc. 6, 89–144 (2016)

    MATH  Google Scholar 

  19. Ghoussoub, N., Robert, F.: The Hardy–Schrödinger operator with interior singularity: the remaining cases. Calc. Var. Partial Differ. Equ. 56, 54 (2017). (Paper No. 149)

    Article  Google Scholar 

  20. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352, 5703–5743 (2000)

    Article  MathSciNet  Google Scholar 

  21. Grossi, M., Takahashi, F.: Nonexistence of multi-bubble solutions to some elliptic equations on convex domains. J. Funct. Anal. 259, 904–917 (2010)

    Article  MathSciNet  Google Scholar 

  22. Guo, Q., Niu, P.: Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains. J. Differ. Equ. 245, 3974–3985 (2008)

    Article  MathSciNet  Google Scholar 

  23. Han, Z.-C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 159–174 (1991)

    Article  MathSciNet  Google Scholar 

  24. Jannelli, E.: The role played by space dimension in elliptic critical problems. J. Differ. Equ. 156, 407–426 (1999)

    Article  MathSciNet  Google Scholar 

  25. Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent. Indiana Univ. Math. J. 5, 541–579 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pures Appl. 93, 1–40 (2010)

    Article  MathSciNet  Google Scholar 

  27. Musso, M., Wei, J.: Nonradial solutions to critical elliptic equations of Caffarelli–Kohn–Nirenberg type. Int. Math. Res. Not. 18, 4120–4162 (2012)

    Article  MathSciNet  Google Scholar 

  28. Pistoia, A., Weth, T.: Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 325–340 (2007)

    Article  MathSciNet  Google Scholar 

  29. Rey, O.: Proof of two conjectures of H. Brézis and L. A. Peletier. Manuscripta Math. 65, 19–37 (1989)

    Article  MathSciNet  Google Scholar 

  30. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    Article  MathSciNet  Google Scholar 

  31. Rey, O.: Blow-up points of solutions to elliptic equations with limiting nonlinearity. Differ. Integral Equ. 4, 1155–1167 (1991)

    MathSciNet  MATH  Google Scholar 

  32. Ruiz, D., Willem, M.: Elliptic problems with critical exponents and Hardy potentials. J. Differ. Equ. 190, 524–538 (2003)

    Article  MathSciNet  Google Scholar 

  33. Smets, D.: Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Am. Math. Soc. 357, 2909–2938 (2005)

    Article  Google Scholar 

  34. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  35. Terracini, S.: On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Adv. Differ. Equ. 2, 241–264 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Daomin Cao for many helpful discussions during the preparation of this paper. This work was carried out while Qianqiao Guo was visiting Justus-Liebig-Universität Gießen, to which he would like to express his gratitude for their warm hospitality.

Funding

Qianqiao Guo was supported by the National Natural Science Foundation of China (Grant no. 11971385) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant no. 2019JM275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqiao Guo.

Additional information

This article is part of the topical collection dedicated to Prof. Dajun Guo for his 85th birthday, edited by Yihong Du, Zhaoli Liu, Xingbin Pan, and Zhitao Zhang.

Appendices

Appendix A: Some lemmas from [6]

In this part we collect some lemmas from [6]. We define for \(\eta \in (0,1)\):

$$\begin{aligned} \begin{aligned} {{\mathcal {T}}}_\eta&:=\big \{(\lambda ,\xi )\in {\mathbb {R}}_+^{k+1}\times \Omega ^{k}:\lambda _i\in (\eta ,\eta ^{-1}),\overline{\lambda }\in (\eta ,\eta ^{-1}),\ \mathrm {dist}(\xi _i,\partial \Omega )>\eta ,\\&\quad |\xi _i|>\eta ,\ |\xi _{i_1}-\xi _{i_2}|>\eta ,\ i,i_1,i_2=1,2,\dots ,k,\ i_1\ne i_2\big \}. \end{aligned} \end{aligned}$$

Lemma A.1

(i) For \(i=1,2,\dots ,k,\) and \(j=0,1,\dots ,N\), there holds

$$\begin{aligned} \Vert P\Psi _i^j-\Psi _i^j\Vert _{2N/(N-2)}={\left\{ \begin{array}{ll} O\left( \delta _i^{\frac{N-2}{2}}\right) \quad &{} \text {if} \; j=1,2,\dots ,N,\\ O\left( \delta _i^{\frac{N-4}{2}}\right) \quad &{} \text {if} \; j=0\end{array}\right. } \end{aligned}$$

as \(\delta _i\rightarrow 0\) uniformly for \(\xi _i\) in a compact subset of \(\Omega\).

(ii) There holds

$$\begin{aligned} \Vert P\overline{\Psi }-\overline{\Psi }\Vert _{2N/(N-2)}=O\left( \sigma ^{\frac{N-4}{2}}\right) \end{aligned}$$

as \(\sigma \rightarrow 0\), uniformly for \(0<\mu <{\overline{\mu }}\).

Lemma A.2

For \(i=1,2,\cdots ,k,\) the following estimates hold uniformly for \((\lambda ,\xi )\in {{\mathcal {T}}}_\eta\):

(i):

For \(\mu ,\sigma \rightarrow 0\):

$$\begin{aligned} \int _{\Omega }|\nabla P V_\sigma |^2-\mu \frac{|P V_\sigma |^2}{|x|^2}= & {} S_\mu ^{\frac{N}{2}}-C_0C_\mu ^{2^*-1} H(0,0)\sigma ^{N-2}\\&\times \int _{{\mathbb {R}}^N} \frac{1}{({|z|^{\beta _1}}+|z|^{\beta _2})^{\frac{N+2}{2}}}+O(\mu \sigma ^{N-2})+O(\sigma ^N). \end{aligned}$$
(ii):

For \(\delta _i,\sigma \rightarrow 0\):

$$\begin{aligned} \int _{\Omega }|\nabla P U_{\delta _i,\xi _i}|^2=S_0^{\frac{N}{2}}-C_0^{2^*}H(\xi _i,\xi _i)\delta _i^{N-2}\int _{{\mathbb {R}}^N} \frac{1}{(1+|z|^2)^{\frac{N+2}{2}}}+o(\delta _i^{N-2}). \end{aligned}$$

Lemma A.3

For \(\mu ,\sigma \rightarrow 0\) there holds

$$\begin{aligned} \int _{\Omega }|P V_\sigma |^{2^*} =S_\mu ^{\frac{N}{2}} -2^*C_0C_\mu ^{2^*-1}H(0,0) \sigma ^{N-2} \int _{{\mathbb {R}}^N} \frac{1}{({|z|^{\beta _1}}+|z|^{\beta _2})^{\frac{N+2}{2}}}+O(\mu \sigma ^{N-2})+O(\sigma ^N). \end{aligned}$$

Lemma A.4

For \(\mu \rightarrow 0^+\) there holds

$$\begin{aligned} \int _{{\mathbb {R}}^N}V_{1}^p=\int _{{\mathbb {R}}^N}U_{1,0}^p+o(1)\quad \text {and}\quad \int _{{\mathbb {R}}^N} V_{1}^p\ln V_{1}=\int _{{\mathbb {R}}^N} U_{1,0}^p\ln U_{1,0}+o(1) \end{aligned}$$

for \(p>1\) as well as

$$\begin{aligned} C_\mu =C_0-\frac{C_0}{N-2}\mu +O(\mu ^2) \quad \text {and}\quad S_\mu =S_0-\overline{S}\mu +O(\mu ^2), \end{aligned}$$

for some positive constant \(\overline{S}\) independent of \(\mu\).

Appendix B: Proof of the lemmas from Sect. 3

Lemma B.1

For \(i,l=1,2,\dots ,k,\) and \(j,h=0,1,\dots ,N\), with \(i\ne l\) or \(j\ne h\), there are constants \(\widetilde{c}_0>0, \widetilde{c}_{i,j}>0\) such that the following estimates hold uniformly for \(0<\mu <\overline{\mu }\):

$$\begin{aligned} \begin{aligned} (P\overline{\Psi },P\overline{\Psi })_\mu&=\widetilde{c}_0\frac{1}{\sigma ^2}+o(\sigma ^{-2})\ \text {as}\ \sigma \rightarrow 0,\\ (P\overline{\Psi },P\Psi _i^j)_\mu&=o(\sigma ^{-2})o(\delta _i^{-2})\ \text {as}\ \sigma \rightarrow 0, \ \delta _i\rightarrow 0,\ \text {uniformly for}\ \xi _i \ \text {in a compact subset of}\ \Omega ,\\ (P\Psi _i^j,P\Psi _i^j)_\mu&=\widetilde{c}_{i,j}\frac{1}{\delta _i^2}+o(\delta _i^{-2})\ \text {as}\ \delta _i\rightarrow 0,\ {uniformly for}\ \xi _i \ \text {in a compact subset of}\ \Omega ,\\ (P\Psi _i^j,P\Psi _l^h)_\mu&=o(\delta _i^{-2})\ \text {as}\ \delta _i\rightarrow 0,\ \text {uniformly for}\ \xi _i, \xi _l\ \text {in a compact subset of}\ \Omega . \end{aligned} \end{aligned}$$

Proof

We omit the proof since it is similar to [6, Lemma A.1]. \(\square\)

Lemma B.2

(i) For \(i,l=1,2,\cdots ,k\) there holds

$$\begin{aligned} \left\| \left( f'_0\left( \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right) -f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right\| _{2N/(N+2)}=o\left( \delta _l^{-\frac{2N}{N+2}}\right) \end{aligned}$$

as \(\sigma , \delta _i, \delta _l \rightarrow 0\) uniformly for \(0<\mu <\overline{\mu }\) and \(\xi _i\) in a compact subset of \(\Omega\).

(ii) There holds

$$\begin{aligned} \left\| \left( f'_0\left( \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right) -f'_0(V_\sigma )\right) \overline{\Psi }\right\| _{2N/(N+2)} = o\left( \sigma ^{-\frac{2N}{N+2}}\right) \end{aligned}$$

as \(\sigma , \delta _i\rightarrow 0\) uniformly for \(0<\mu <\overline{\mu }\) and \(\xi _i\) in a compact subset of \(\Omega\).

Proof

We only prove (i) for \(h\ne 0\).

$$\begin{aligned} \begin{aligned}&\int _\Omega \left| \left( f'_0\left( \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right) -f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right| ^{2N/(N+2)}\\&\quad =\bigcup \limits _{i=1}^{k+1}\int _{A_i} \left| \left( f'_0\left( \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right) -f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right| ^{2N/(N+2)}\\&\qquad +\int _{\Omega \backslash B(0,\rho )} \left| \left( f'_0\left( \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right) -f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right| ^{2N/(N+2)}. \end{aligned} \end{aligned}$$

As in [26, Lemma A.3], by (2.3) and (2.4) we have

$$\begin{aligned} \begin{aligned}&\int _{A_l} \left| \left( f'_0\left( \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right) -f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right| ^{2N/(N+2)}\\&\quad \le C\int _{A_l} |U_{\delta _l,\xi _l}^{2^*-3}\varphi _{\delta _l,\xi _l}\Psi _l^h|^{2N/(N+2)}+C\sum \limits _{i\ne l}\int _{A_l} |U_{\delta _l,\xi _l}^{2^*-3}U_{\delta _i,\xi _i}\Psi _l^h|^{2N/(N+2)}\\&\qquad +C\int _{A_l} |U_{\delta _l,\xi _l}^{2^*-3}V_\sigma \Psi _l^h|^{2N/(N+2)}\\&\quad \le o\left( \delta _l^{-\frac{2N}{N+2}}\right) , \end{aligned} \end{aligned}$$
(B.1)

where we use

$$\begin{aligned} \int _{A_l} |U_{\delta _l,\xi _l}^{2^*-3}\varphi _{\delta _l,\xi _l}\Psi _l^h|^{2N/(N+2)} \le C\int _{A_l} \left| \frac{\delta _l^{\frac{N+2}{2}}(x^h-\xi _l^h)}{(\delta _l^2+|x-\xi _l|^2)^3}\right| ^{2N/(N+2)}=O\left( \delta _l^{\frac{2N(N-3)}{N+2}}\right) , \end{aligned}$$

for \(i\ne l\),

$$\begin{aligned} \begin{aligned}&\int _{A_l} |U_{\delta _l,\xi _l}^{2^*-3}U_{\delta _i,\xi _i}\Psi _l^h|^{2N/(N+2)} =C\int _{A_l} \left| \frac{\delta _l^2(x^h-\xi _l^h)}{(\delta _l^2+|x-\xi _l|^2)^3}\frac{\delta _i^{\frac{N-2}{2}}}{(\delta _i^2+|x-\xi _i|^2)^{\frac{N-2}{2}}}\right| ^{2N/(N+2)}\\&\quad \le C\left( \int _{A_l} \left| \frac{\delta _l^2(x^h-\xi _l^h)}{(\delta _l^2+|x-\xi _l|^2)^3}\right| ^{\frac{N}{2}}\right) ^{\frac{4}{N+2}} \left( \int _{A_l}\left| \frac{\delta _i^{\frac{N-2}{2}}}{(\delta _i^2+|x-\xi _i|^2)^{\frac{N-2}{2}}}\right| ^{2N/(N-2)}\right) ^{\frac{N-2}{N+2}} =o\left( \delta _l^{-\frac{2N}{N+2}}\right) , \end{aligned} \end{aligned}$$

and similarly,

$$\begin{aligned} \int _{A_l} |U_{\delta _l,\xi _l}^{2^*-3}V_\sigma \Psi _l^h|^{2N/(N+2)}=o\left( \delta _l^{-\frac{2N}{N+2}}\right) . \end{aligned}$$

The same arguments as for (B.1) yield for \(i\ne l\):

$$\begin{aligned} \int _{A_i} \left| \left( f'_0(\sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma )-f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right| ^{2N/(N+2)} =o\left( \delta _l^{-\frac{2N}{N+2}}\right) . \end{aligned}$$

Finally,

$$\begin{aligned} \begin{aligned}&\int _{\Omega \backslash B(0,\rho )} \left| \left( f'_0(\sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma )-f'_0(U_{\delta _l,\xi _l})\right) \Psi _l^h\right| ^{\frac{2N}{(N+2)}}\\&\quad ={\left\{ \begin{array}{ll} O\left( \delta _l^{\frac{N(N-2)}{N+2}}\right) \left( O\left( \sigma ^{\frac{4N}{N+2}}\right) +\sum \limits _{i=1}^{k}O\left( \delta _i^{\frac{4N}{N+2}}\right) \right) \quad &{} \text {if} \,\, h=1,2,\dots ,N,\\ O\left( \delta _l^{\frac{N(N-4)}{N+2}}\right) \left( O\left( \sigma ^{\frac{4N}{N+2}}\right) +\sum \limits _{i=1}^{k}O\left( \delta _i^{\frac{4N}{N+2}}\right) \right) \quad &{} \text {if} \,\, h=0. \end{array}\right. } \end{aligned} \end{aligned}$$

Then (i) follows. \(\square\)

Lemma B.3

There holds

$$\begin{aligned} \left\| \iota _\mu ^*\left( \sum \limits _{i=1}^{k}(-1)^{i-1}f_0(U_{\delta _i,\xi _i})+(-1)^kf_0(V_\sigma )\right) -V_{\varepsilon ,\lambda ,\zeta }\right\| _\mu \le \sum \limits _{i=1}^{k}O(\mu \delta _i)+O\left( \left( \mu \sigma ^{\frac{N-2}{2}}\right) ^{\frac{1}{2}}\right) \end{aligned}$$

as \(\mu ,\sigma ,\delta _i\rightarrow 0\) uniformly for \(\xi _i\) in a compact subset of \(\Omega\).

Proof

It is similar to [6, Lemma A.4]. \(\square\)

Lemma B.4

For \(\epsilon \rightarrow 0\), the following estimates hold uniformly for \(0<\mu <\overline{\mu }\) and \((\lambda ,\zeta )\in {{\mathcal {O}}}_\eta\):

$$\begin{aligned} \begin{aligned}&\Vert (f'_\varepsilon (V_{\varepsilon ,\lambda ,\zeta })-f'_0(V_{\varepsilon ,\lambda ,\zeta }))\phi \Vert _{2N/(N+2)} =O(\varepsilon )\Vert \phi \Vert _\mu ,\\&\Vert f_\varepsilon (V_{\varepsilon ,\lambda ,\zeta })-f_0(V_{\varepsilon ,\lambda ,\zeta })\Vert _{2N/(N+2)} =O(\varepsilon ),\\&\Vert f_0(V_{\varepsilon ,\lambda ,\zeta })-\left( \sum \limits _{i=1}^{k}(-1)^{i-1}f_0(U_{\delta _i,\xi _i})+(-1)^k f_0(V_\sigma )\right) \Vert _{2N/(N+2)} = O\left( \varepsilon ^\frac{N+2}{2(N-2)}\right) . \end{aligned}\end{aligned}$$

Proof

The first two are from [3]. The last one can be proved as (4.5) in [26]. \(\square\)

Lemma B.5

Let \(k\ge 1\). Assume without loss of generality that \(1\le i<j\le k\).Then the following estimates hold uniformly for \((\lambda ,\zeta )\in {{\mathcal {O}}}_\eta\):

(i):

For \(\epsilon \rightarrow 0\):

$$\begin{aligned} \int _{\Omega }|\nabla P V_\sigma |^2-\mu \frac{|P V_\sigma |^2}{|x|^2}=S_\mu ^{\frac{N}{2}}+o(\varepsilon ). \end{aligned}$$
(ii):

For \(\epsilon \rightarrow 0\):

$$\begin{aligned} \begin{aligned}&\int _{\Omega }\nabla P V_\sigma \nabla PU_{\delta _i,\xi _i}-\mu \frac{P V_\sigma PU_{\delta _i,\xi _i}}{|x|^2}\\&\quad = {\left\{ \begin{array}{ll} C_0^{2^*}(\frac{\overline{\lambda }}{\lambda _k})^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{(1+|y|^2)^{\frac{N+2}{2}}}\frac{1}{(1+|\zeta _k|^2)^{\frac{N-2}{2}}}\cdot \varepsilon +o(\varepsilon ) \quad &{} \text {if} ~~i=k,\\ o(\varepsilon )\quad &{} \text {if} ~~i\ne k. \end{array}\right. } \end{aligned} \end{aligned}$$
(iii):

For \(\epsilon \rightarrow 0\):

$$\begin{aligned} \mu \int _{\Omega }\frac{|PU_{\delta _i,\xi _i}|^2}{|x|^2}=\mu C_0^2\int _{{\mathbb {R}}^N}\frac{1}{|y|^2(1+|y-\zeta _i|^2)^{N-2}}+o(\varepsilon ). \end{aligned}$$
(iv):

For \(\epsilon \rightarrow 0\):

$$\begin{aligned} \mu \int _{\Omega }\frac{PU_{\delta _i,\xi _i}PU_{\delta _j,\xi _j}}{|x|^2} =o(\varepsilon ),~~~i\ne j. \end{aligned}$$
(v):

For \(\epsilon \rightarrow 0\):

$$\begin{aligned} \int _{\Omega }|\nabla P U_{\delta _i,\xi _i}|^2 = {\left\{ \begin{array}{ll} S_0^{\frac{N}{2}}-C_0^{2^*}H(0,0)\lambda _1^{N-2}\int _{{\mathbb {R}}^N} \frac{1}{(1+|z|^2)^{\frac{N+2}{2}}}\cdot \varepsilon +o(\varepsilon ) \quad &{} \text {if} \,\,i=1,\\ S_0^{\frac{N}{2}}+o(\varepsilon )\quad &{} \text {if} \,\,i\ne 1. \end{array}\right. } \end{aligned}$$
(vi):

For \(\epsilon \rightarrow 0\):

$$\begin{aligned}&\int _{\Omega }\nabla P U_{\delta _i,\xi _i}\nabla P U_{\delta _j,\xi _j}\\&\quad = {\left\{ \begin{array}{ll} C_0^{2^*}(\frac{\lambda _{i+1}}{\lambda _i})^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{(1+|y|^2)^{\frac{N+2}{2}}}\frac{1}{(1+|\zeta _i|^2)^{\frac{N-2}{2}}}\cdot \varepsilon +o(\varepsilon ) \quad &{} \text {if} ~~j=i+1,\\ o(\varepsilon )\quad &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

Proof

(i) and (v) follow from Lemma A.2.

Now we prove (ii). Using (2.4), integration by parts yields

$$\begin{aligned} \int _{\Omega }\nabla P V_\sigma \nabla PU_{\delta _i,\xi _i}-\mu \frac{PV_\sigma PU_{\delta _i,\xi _i}}{|x|^2} = \int _{\Omega }V_\sigma ^{2^*-1}(U_{\delta _i,\xi _i}-\varphi _{\delta _i,\xi _i})+\mu \int _\Omega \frac{\varphi _\sigma (U_{\delta _i,\xi _i}-\varphi _{\delta _i,\xi _i})}{|x|^2}. \end{aligned}$$
(B.2)

It is easy to show, using (2.3) and (2.4), that

$$\begin{aligned} \begin{aligned} \int _{\Omega }V_\sigma ^{2^*-1}\varphi _{\delta _i,\xi _i}&\le C\delta _i^{\frac{N-2}{2}}\int _{\Omega } \frac{\sigma ^{\frac{N+2}{2}}}{(\sigma ^2|x|^{\beta _1}+|x|^{\beta _2})^{\frac{N+2}{2}}}\\&\le C\sigma ^{\frac{\overline{\mu }}{\sqrt{\overline{\mu }-\mu }}}\delta _i^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N} \frac{1}{(|y|^{\beta _1}+|y|^{\beta _2})^{\frac{N+2}{2}}}=O(\sigma ^{\frac{N-2}{2}}\delta _i^{\frac{N-2}{2}}), \end{aligned} \end{aligned}$$
(B.3)

and

$$\begin{aligned} \mu \int _\Omega \frac{\varphi _\sigma (U_{\delta _i,\xi _i}-\varphi _{\delta _i,\xi _i})}{|x|^2} \le \mu \int _\Omega \frac{\varphi _\sigma U_{\delta _i,\xi _i}}{|x|^2}\le O(\mu \sigma ^{\frac{N-2}{2}}). \end{aligned}$$
(B.4)

On the other hand,

$$\begin{aligned} \int _{\Omega }V_\sigma ^{2^*-1} U_{\delta _i,\xi _i}=\bigcup \limits _{j=1}^{k+1}\int _{A_j}V_\sigma ^{2^*-1} U_{\delta _i,\xi _i}+O(\sigma ^{\frac{N+2}{2}}\delta _i^{\frac{N-2}{2}}). \end{aligned}$$
(B.5)

If \(i=k,j=k+1\), then

$$\begin{aligned} \begin{aligned} \int _{A_{k+1}}V_\sigma ^{2^*-1} U_{\delta _k,\xi _k}&= C_\mu ^{2^*-1} C_0\sigma ^{\frac{N+2}{2}}\delta _k^{\frac{N-2}{2}}\int _{A_{k+1}}\frac{1}{({\sigma ^2|x|^{\beta _1}} +|x|^{\beta _2})^{\frac{N+2}{2}}}\frac{1}{(\delta _k^2+|x-\xi _k|^2)^{\frac{N-2}{2}}}\\&= C_\mu ^{2^*-1} C_0\frac{\sigma ^{\frac{\overline{\mu }}{\sqrt{\overline{\mu }-\mu }}}}{\delta _k^{\frac{N-2}{2}}} \int _{\frac{A_{k+1}}{\sigma ^{\frac{\sqrt{\overline{\mu }}}{\sqrt{\overline{\mu }-\mu }}}}}\frac{1}{({|y|^{\beta _1}} +|y|^{\beta _2})^{\frac{N+2}{2}}}\frac{1}{\left( 1+\left| \frac{\sigma ^{\frac{\sqrt{\overline{\mu }}}{\sqrt{\overline{\mu }-\mu }}}}{\delta _k}y-\zeta _k\right| ^2\right) ^{\frac{N-2}{2}}}\\&= C_0^{2^*}\left( \frac{\overline{\lambda }}{\lambda _k}\right) ^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{(1+|y|^2)^{\frac{N+2}{2}}}\frac{1}{(1+|\zeta _k|^2)^{\frac{N-2}{2}}}\cdot \varepsilon +o(\varepsilon ). \end{aligned} \end{aligned}$$
(B.6)

If \(i\ne k\) or \(j\ne k+1\), then similar arguments as for (B.6) yield

$$\begin{aligned} \int _{A_j}V_\sigma ^{2^*-1} U_{\delta _i,\xi _i}=o(\varepsilon ). \end{aligned}$$
(B.7)

Then we conclude by (B.2)–(B.7).

Next (iii) follows from:

$$\begin{aligned} \begin{aligned} \mu \int _{\Omega }\frac{|PU_{\delta _i,\xi _i}|^2}{|x|^2}&=\mu \int _{\Omega }\frac{|U_{\delta _i,\xi _i}|^2}{|x|^2}+O(\mu \delta _i^{N-2})\\&=\mu C_0^2\int _{\frac{\Omega }{\delta _i}}\frac{1}{|y|^2(1+|y-\zeta _i|^2)^{N-2}}+O(\mu \delta _i^{N-2})\\&=\mu C_0^2\int _{{\mathbb {R}}^N}\frac{1}{|y|^2(1+|y-\zeta _i|^2)^{N-2}}+o(\varepsilon ). \end{aligned} \end{aligned}$$

Similar arguments imply (iv).

For the proof of (vi), without loss of generality let \(1\le i<j\le k\). Then

$$\begin{aligned} &\int _{\Omega }\nabla P U_{\delta _i,\xi _i}\nabla P U_{\delta _j,\xi _j} =\int _{\Omega }U_{\delta _j,\xi _j}^{2^*-1}U_{\delta _i,\xi _i}+o(\varepsilon )\\&\quad = {\left \{\begin{array}{ll} C_0^{2^*}(\frac{\lambda _{i+1}}{\lambda _i})^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{(1+|y|^2)^{\frac{N+2}{2}}}\frac{1}{(1+|\zeta _i|^2)^{\frac{N-2}{2}}}\cdot \varepsilon +o(\varepsilon ) \quad &{} \text {if} \,\,j=i+1,\\ o(\varepsilon )\quad &{} \text {otherwise}. \end{array}\right.} \end{aligned}$$
(B.8)

\(\square\)

Lemma B.6

Let \(k\ge 1\). For \(\epsilon \rightarrow 0\) there holds, uniformly for \((\lambda ,\zeta )\in {{\mathcal {O}}}_\eta\), setting \(\lambda _{k+1}=\overline{\lambda }\):

$$\begin{aligned} \begin{aligned}&\int _{\Omega }\left| \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right| ^{2^*}\\&\quad = kS_0^{\frac{N}{2}}+S_\mu ^{\frac{N}{2}}-2^*C_0^{2^*}H(0,0)\lambda _1^{N-2}\int _{{\mathbb {R}}^N} \frac{1}{(1+|z|^2)^{\frac{N+2}{2}}}\cdot \varepsilon \\&\qquad -2^*C_0^{2^*}\sum \limits _{i=1}^{k}(\frac{\lambda _{i+1}}{\lambda _i})^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{|y|^{N-2}(1+|y-\zeta _i|^2)^{\frac{N+2}{2}}}\cdot \varepsilon \\&\qquad -2^*C_0^{2^*}\sum \limits _{i=1}^{k}(\frac{\lambda _{i+1}}{\lambda _i})^{\frac{N-2}{2}} \int _{{\mathbb {R}}^N}\frac{1}{(1+|y|^2)^{\frac{N+2}{2}}}\frac{1}{(1+|\zeta _i|^2)^{\frac{N-2}{2}}}\cdot \varepsilon +o(\varepsilon ), \end{aligned} \end{aligned}$$

Proof

It is easy to see that

$$\begin{aligned} \int _{\Omega }\left| \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right| ^{2^*} =\bigcup \limits _{j=1}^{k+1}\int _{A_j}|\sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma |^{2^*} +O(\delta _1^N). \end{aligned}$$

Observe that

$$\begin{aligned} \begin{aligned} \int _{A_k}V_\sigma U_{\delta _k,\xi _k}^{2^*-1}&= C_\mu C_0^{2^*-1}\sigma ^{\frac{N-2}{2}}\delta _k^{\frac{N+2}{2}}\int _{A_k}\frac{1}{({\sigma ^2|x|^{\beta _1}} +|x|^{\beta _2})^{\frac{N-2}{2}}}\frac{1}{(\delta _k^2+|x-\xi _k|^2)^{\frac{N+2}{2}}}\\&= C_\mu C_0^{2^*-1}\frac{\sigma ^{\frac{N-2}{2}}}{\delta _k^{\sqrt{\overline{\mu }-\mu }}}\int _{\frac{A_k}{\delta _k}}\frac{1}{({(\frac{\sigma }{\delta _k})^2|y|^{\beta _1}} +|y|^{\beta _2})^{\frac{N-2}{2}}}\frac{1}{(1+|y-\zeta _k|^2)^{\frac{N+2}{2}}}\\&= C_0^{2^*}(\frac{\overline{\lambda }}{\lambda _k})^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{|y|^{N-2}(1+|y-\zeta _k|^2)^{\frac{N+2}{2}}}\cdot \varepsilon +o(\varepsilon ), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \int _{A_j}V_\sigma U_{\delta _i,\xi _i}^{2^*-1}=o(\varepsilon ), ~\text {if}~i\ne k,~\text {or}~j\ne k. \end{aligned}$$

From [26], for \(1\le i<j\le k\) we also have

$$\begin{aligned}&\int _{A_l}U_{\delta _j,\xi _j}U_{\delta _i,\xi _i}^{2^*-1}+o(\varepsilon )\\&\quad ={\left\{ \begin{array}{ll} C_0^{2^*}(\frac{\lambda _{i+1}}{\lambda _i})^{\frac{N-2}{2}}\int _{{\mathbb {R}}^N}\frac{1}{|y|^{N-2}(1+|y-\zeta _i|^2)^{\frac{N+2}{2}}}\cdot \varepsilon +o(\varepsilon ) \quad &{} \text {if} \,\,j=i+1,i=l,\\ o(\varepsilon )\quad &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

Using (B.6), (B.8) and the above three equalities, the proof of (B.9) is contained in Lemma 6.2 in [26]. \(\square\)

Lemma B.7

For \(\mu , \sigma , \delta _i \rightarrow 0\) there holds, uniformly in compact subsets of \(\Omega\),

$$\begin{aligned} \begin{aligned}&\int _{\Omega }\left| \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right| ^{2^*}\ln \left| \sum \limits _{i=1}^{k}(-1)^{i-1}PU_{\delta _i,\xi _i}+(-1)^k PV_\sigma \right| \\&\quad =-\frac{N-2}{2}\ln \sigma \cdot \int _{{\mathbb {R}}^N} V_1^{2^*}-\frac{N-2}{2}\ln (\delta _1 \delta _2\dots \delta _k)\cdot \int _{{\mathbb {R}}^N} U_{1,0}^{2^*}\\&\qquad +\int _{{\mathbb {R}}^N} V_1^{2^*}\ln V_1+k\int _{{\mathbb {R}}^N} U_{1,0}^{2^*}\ln U_{1,0}+o(1). \end{aligned} \end{aligned}$$

Proof

The proof is similar to the one of [6, Lemma A.9]. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsch, T., Guo, Q. Nodal bubble tower solutions to slightly subcritical elliptic problems with Hardy terms. SN Partial Differ. Equ. Appl. 1, 26 (2020). https://doi.org/10.1007/s42985-020-00029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00029-9

Keywords

Mathematics Subject Classification

Navigation