Skip to main content

Advertisement

Log in

Issues and Challenges in Detecting Mental Stress from Multimodal Data Using Machine Intelligence

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The human body responds to challenging events or demanding conditions by entering an escalated psycho-physiological state known as stress. Psychological stress can be captured through physiological signals (ECG, EEG, EDA, GSR, etc.) and behavioral signals (eye gaze, head movement, pupil diameter, etc.) Multiple stressors occurring simultaneously can cause adverse mental and physical health effects, leading to chronic health issues. Continuous monitoring of stress using wearable devices promises real-time data collection, enabling early detection and prevention of stress-related issues. The present study presents an extensive overview of stress detection techniques utilizing wearable sensors, and machine & deep learning methods. Various types of machine learning algorithms, such as logistic regression, support vector machines, random forest, and deep learning models, have been applied to analyze data and detect stress. Additionally, the paper highlights the stress detection datasets and research conducted in different areas. The challenges and obstacles related to detecting stress using machine intelligence are also addressed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

There is no applicable data sharing for this article as no datasets were generated during the current study.

References

  1. Priya A, Garg S, Tigga NP. Predicting anxiety, depression and stress in modern life using machine learning algorithms. Procedia Comput Sci. 2020;167:1258–67.

    Article  Google Scholar 

  2. Elzeiny S, Qaraqe MK. Machine learning approaches to automatic stress detection: a review. 2018 IEEE/ACS 15th international conference on computer systems and applications (AICCSA). 2018. 1–6.

  3. Aitzaouiat CE, Latif A, Benslimane A, Chin H-H. Machine learning based prediction and modeling in healthcare secured internet of things. Mobile Netw Appl. 2022;27(1):84–95. https://doi.org/10.1007/s11036-020-01711-3.

    Article  Google Scholar 

  4. Park CW, Seo SW, Kang N, Ko B, Choi BW, Park CM, Yoon HJ. Artificial intelligence in health care: current applications and issues. J Korean Med Sci. 2020;35(42): e379. https://doi.org/10.3346/jkms.2020.35.e379.

    Article  Google Scholar 

  5. Masood K, Alghamdi MA. Modeling mental stress using a deep learning framework. IEEE Access: Pract Innov Open Solut. 2019;7:68446–54. https://doi.org/10.1109/access.2019.2917718.

    Article  Google Scholar 

  6. Hantono B, Nugroho L, Santosa P. Mental stress detection via heart rate variability using machine learning. Int J Electr Eng Inf. 2020;12(3):431–44. https://doi.org/10.15676/ijeei.2020.12.3.3.

    Article  Google Scholar 

  7. Amin M, Ullah K, Asif M, Waheed A, Haq SU, Zareei M, Biswal RR. ECG-based driver’s stress detection using deep transfer learning and fuzzy logic approaches. IEEE Access: Pract Innov Open Solut. 2022;10:29788–809. https://doi.org/10.1109/access.2022.3158658.

    Article  Google Scholar 

  8. Tian Y. Identification and Modeling of college students’ psychological stress indicators for deep learning. Sci Programm. 2022;2022:6048088. https://doi.org/10.1155/2022/6048088.

    Article  Google Scholar 

  9. Bin Heyat Md, Belal FA, Abbas SJ, Al-Sarem M, Alqarafi A, Stalin A, Abbasi R, Muaad AY, Lai D, Kaishun Wu. Wearable flexible electronics based cardiac electrode for researcher mental stress detection system using machine learning models on single lead electrocardiogram signal. Biosensors. 2022;12(6):427. https://doi.org/10.3390/bios12060427.

    Article  Google Scholar 

  10. Zhang P, Li F, Du L, Zhao R, Chen X, Yang T, Fang Z. Psychological stress detection according to ECG using a deep learning model with attention mechanism. Appl Sci. 2021;11(6):2848. https://doi.org/10.3390/app11062848.

    Article  Google Scholar 

  11. Xia L, Malik AS, Subhani AR. A physiological signal-based method for early mental-stress detection. Biomed Signal Process Control. 2018;46:18–32. https://doi.org/10.1016/j.bspc.2018.06.004.

    Article  Google Scholar 

  12. Zhang X, Shen J, Din ud Z, Liu J, Wang G, Hu B. Multimodal depression detection: Fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble. IEEE J Biomed Health Inf. 2019;23(6):2265–75. https://doi.org/10.1109/jbhi.2019.2938247.

    Article  Google Scholar 

  13. Hwang B, You J, Vaessen T, Myin-Germeys I, Park C, Zhang BT. Deep ECGNet: an optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals. Telemed J E-Health: Off J Am Telemed Assoc. 2018;24(10):753–72. https://doi.org/10.1089/tmj.2017.0250.

    Article  Google Scholar 

  14. Saeed SMU, Anwar SM, Khalid H, Majid M, Bagci U. EEG based classification of long-term stress using psychological labeling. Sensors. 2020;20(7):1886. https://doi.org/10.3390/s20071886.

    Article  Google Scholar 

  15. Hag A, Handayani D, Altalhi M, Pillai T, Mantoro T, Kit MH, Al-Shargie F. Enhancing EEG-Based mental stress state recognition using an improved hybrid feature selection algorithm. Sensors. 2021;21(24):8370. https://doi.org/10.3390/s212483.

    Article  Google Scholar 

  16. Phutela N, Relan D, Gabrani G, Kumaraguru P, Samuel M. Stress classification using brain signals based on LSTM network. Comput Intell Neurosci. 2022;2022:7607592. https://doi.org/10.1155/2022/7607592.

    Article  Google Scholar 

  17. AlShorman O, Masadeh M, Heyat MBB, Akhtar F, Almahasneh H, Ashraf GM, Alexiou A. Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. J Integr Neurosci. 2022;21(1):20. https://doi.org/10.31083/j.jin2101020.

    Article  Google Scholar 

  18. Li R, Liu Z. Stress detection using deep neural networks. BMC Med Inform Decis Mak. 2020;20(Suppl 11):285. https://doi.org/10.1186/s12911-020-01299-4.

    Article  Google Scholar 

  19. Hongning Z. A novel deep learning model for analyzing psychological stress in college students. April 22, 2022. https://www.hindawi.com/journals/jece/2022/3244692/.

  20. Zhao Y, Liang Z, Du J, Zhang L, Liu C, Zhao L. Multi-head attention-based long short-term memory for depression detection from speech. Front Neurorobot. 2021;15: 684037. https://doi.org/10.3389/fnbot.2021.684037.

    Article  Google Scholar 

  21. Anupama R, Siddharth K, Rutvik R, Prerana M, Ritu Garg. Multi-level attention network using text, audio and video for depression Prediction, Proceedings of the 9th international workshop on audio/visual emotion challenge, AVEC 2019, ACM multimedia workshop, Nice, France. 2019. https://doi.org/10.48550/arXiv.1909.01417

  22. Sun H, Liu J, Chai S, Qiu Z, Lin L, Huang X, Chen Y. Multi-modal adaptive fusion transformer network for the estimation of depression level. Sensors. 2021;21(14):4764. https://doi.org/10.3390/s21144764.

    Article  Google Scholar 

  23. Brian D, Marija S, Jekaterina N. Multimodal deep learning system for depression and anxiety detection. 2022. https://doi.org/10.48550/arXiv.2212.14490

  24. Ye J, Yu Y, Wang Q, et al. Multi-modal depression detection based on emotional audio and evaluation text. J Affect Disord. 2021;2021(295):904–13. https://doi.org/10.1016/j.jad.2021.08.090.

    Article  Google Scholar 

  25. Rejaibi E, Komaty A, Meriaudeau F, Agrebi S, Othmani A. MFCC-based recurrent neural network for automatic clinical depression recognition and assessment from speech. Biomed Signal Process Control. 2022;71:103107. https://doi.org/10.1016/j.bspc.2021.103107. (ISSN 1746-8094).

    Article  Google Scholar 

  26. Lam G, Huang D, Lin W. Context-aware deep learning for multi-modal depression detection. ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). 2019; 3946–3950.

  27. Hamad Z, Imran R, Xianzhi W, Shoaib J, Guandong X. Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media. World Wide Web. 2022;25:281–304. https://doi.org/10.1007/s11280-021-00992-2.

    Article  Google Scholar 

  28. Hrithwik S, Harikrishnan P, Hari Sankar CN, Akash D, Saptarshi M, Arnhav D, Subin Mathew MS, Anugyan D, Juned K, Depression status estimation by deep learning based hybrid multi-modal fusion model. Doi: https://doi.org/10.48550/arXiv.2011.14966

  29. Minghao D, Liu S, Wang T, Zhang W, Ke Y, Chen L, Ming D. Depression recognition using a proposed speech chain model fusing speech production and perception features. J Affect Disord. 2023;323:299–308. https://doi.org/10.1016/j.jad.2022.11.060.

    Article  Google Scholar 

  30. Zogan H, Razzak I, Wang X, Jameel S, Guandong X. Explainable depression detection with multi-modalities using a hybrid deep learning model on social media. World wide Web. 2020. https://doi.org/10.48550/arXiv.2007.02847.

    Article  Google Scholar 

  31. Zhang J, Yin H, Zhang J, Yang G, Qin J, He L. Real-time mental stress detection using multimodality expressions with a deep learning framework. Front Neurosci. 2022;16: 947168. https://doi.org/10.3389/fnins.2022.947168.

    Article  Google Scholar 

  32. Jaber D, Hajj H, Maalouf F, et al. Medically-oriented design for explainable AI for stress prediction from physiological measurements. BMC Med Inform Decis Mak. 2022;22:38. https://doi.org/10.1186/s12911-022-01772-2.

    Article  Google Scholar 

  33. Aristizabal S, Byun K, Wood N, Mullan AF, Porter PM, Campanella C, Bauer BA. The feasibility of wearable and self-report stress detection measures in a semi-controlled lab environment. IEEE Access: Pract Innov Open Solut. 2021;9:102053–68. https://doi.org/10.1109/access.2021.3097038.

    Article  Google Scholar 

  34. Xu S, Arnetz JE, Arnetz BB. Applying machine learning to explore the association between biological stress and near misses in emergency medicine residents. PLoS ONE. 2022;17(3): e0264957. https://doi.org/10.1371/journal.pone.0264957.

    Article  Google Scholar 

  35. Morales J, Yáñez A, Fernández-González L, Montesinos-Magraner L, Marco-Ahulló A, Solana-Tramunt M, Calvete E. Stress and autonomic response to sleep deprivation in medical residents: a comparative cross-sectional study. PLoS ONE. 2019;14(4): e0214858. https://doi.org/10.1371/journal.pone.0214858.

    Article  Google Scholar 

  36. Zhang H, Cao L, Feng L, Yang M. Multi-modal interactive fusion method for detecting teenagers’ psychological stress. J Biomed Inform. 2020;106: 103427. https://doi.org/10.1016/j.jbi.2020.103427.

    Article  Google Scholar 

  37. Vuppalapati C, Khan MS, Raghu N, Veluru P, Khursheed S. A system to detect mental stress using machine learning and mobile development. 2018 International conference on machine learning and cybernetics (ICMLC). 2018; 1:161–166.

  38. Tonacci A, Dellabate A, Dieni A, Bachi L, Sansone F, Conte R, Billeci L. Can machine learning predict stress reduction based on wearable sensors’ data following relaxation at workplace? A pilot study. Processes. 2020;8(4):448. https://doi.org/10.3390/pr8040448.

    Article  Google Scholar 

  39. Shon D, Im K, Park JH, Lim DS, Jang B, Kim JM. Emotional stress state detection using genetic algorithm-based feature selection on EEG signals. Int J Environ Res Public Health. 2018;15(11):2461. https://doi.org/10.3390/ijerph15112461.

    Article  Google Scholar 

  40. Liao C, Chen RC, Tai S. Emotion stress detection using EEG signal and deep learning technologies. IEEE Int Conf Appl Syst Inven (ICASI). 2018;2018:90–3.

    Article  Google Scholar 

  41. Thati RP, Dhadwal AS, Kumar P, et al. A novel multi-modal depression detection approach based on mobile crowd sensing and task-based mechanisms. Multimed Tools Appl. 2023;82:4787–820. https://doi.org/10.1007/s11042-022-12315-2.

    Article  Google Scholar 

  42. Rastgoo MN, Nakisa B, Maire F, Rakotonirainy A, Chandran V. Automatic driver stress level classification using multimodal deep learning. Expert Syst Appl. 2019;138(112793):1–11.

    Google Scholar 

  43. Morales-Fajardo HM, Rodríguez-Arce J, Gutiérrez-Cedeño A, Viñas JC, Reyes-Lagos JJ, Abarca-Castro EA, Ledesma-Ramírez CI, et al. Towards a non-contact method for identifying stress using remote photoplethysmography in academic environments. Sensors. 2022;22(10):3780. https://doi.org/10.3390/s22103780.

    Article  Google Scholar 

  44. Seo W, Kim N, Park C, Park S-M. Deep learning approach for detecting work-related stress using multimodal signals. IEEE Sens J. 2022;22(12):11892–902. https://doi.org/10.1109/JSEN.2022.3170915.

    Article  Google Scholar 

  45. Rahman AA et al. Perceived stress analysis of undergraduate students during COVID-19: a machine learning approach, 2022 IEEE 21st mediterranean electrotechnical conference (MELECON), Palermo, Italy, 2022, pp. 1129-1134, doi: https://doi.org/10.1109/MELECON53508.2022.9843081

  46. Nilushika Gamage S, Dinesh Asanka PPG. Machine learning approach to predict mental distress of IT Workforce in remote working environments, International Research conference on smart computing and systems engineering (SCSE), Colombo, Sri Lanka, 2022, pp. 211–216, doi: https://doi.org/10.1109/SCSE56529.2022.9905229.

  47. Sartain A, El-Haj M. The influence of social factors on mental health and wellbeing during the COVID-19 pandemic, IEEE international conference on big data (big data), Orlando, FL, USA, 2021, pp. 2818–2827, Doi: https://doi.org/10.1109/BigData52589.2021.9671551.

  48. Priya Sri EK, Savita KS, Zaffar M. Depression detection in tweets from urban cities of malaysia using deep learning,7th international conference on research and innovation in information systems (ICRIIS), Johor Bahru, Malaysia, 2021, pp. 1–6, doi: https://doi.org/10.1109/ICRIIS53035.2021.9617079.

  49. Palattao CA, Solano GA, Tee CA, Tee ML. Determining factors contributing to the psychological impact of the COVID-19 Pandemic using machine learning. Int Conf Artif Intell Inf Commun (ICAIIC). 2021;2021:219–24.

    Google Scholar 

  50. Khan HA, Nguyen TN, Shafiq G, Mirza J, Javed MA. A secure wearable framework for stress detection in patients affected by communicable diseases. IEEE Sens J. 2023;23(2):981–8. https://doi.org/10.1109/JSEN.2022.3204586.

    Article  Google Scholar 

  51. Lee J, Lee H, Shin M. Driving stress detection using multimodal convolutional neural networks with nonlinear representation of short-term physiological signals. Sensors. 2021;21(7):2381. https://doi.org/10.3390/s21072381.

    Article  Google Scholar 

  52. Jyotsna C, Amudha J. Eye gaze as an indicator for stress level analysis in students. 2018 International conference on advances in computing, communications and informatics (ICACCI). 2018. 1588–1593.

  53. Mou L, Zhou C, Zhao P, Nakisa B, Rastgoo MN, Jain R, Gao W. Driver stress detection via multimodal fusion using attention-based CNN-LSTM. Expert Syst Appl. 2021. https://doi.org/10.1016/j.eswa.2021.114693.

    Article  Google Scholar 

  54. Giannakakis G, Pediaditis M, Manousos D, Kazantzaki E, Chiarugi F, Simos PG, Marias K, Tsiknakis M. Stress and anxiety detection using facial cues from videos. Biomed Signal Process Control. 2017;31:89–101.

    Article  Google Scholar 

  55. Sarker IH. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci. 2021;2(6):420. https://doi.org/10.1007/s42979-021-00815-1.

    Article  Google Scholar 

  56. Schmidt P, Reiss A, Duerichen R, Marberger C, Van Laerhoven K. Introducing WESAD, a multimodal dataset for wearable stress and affect detection, ICMI 2018. USA: Boulder; 2018.

    Google Scholar 

  57. Koldijk S, Sappelli M, Verberne S, Neerincx M, Kraaij W (2014) The SWELL knowledge work dataset for stress and user modeling research. To appear in: Proceedings of the 16th ACM international conference on multimodal interaction (ICMI 2014) (Istanbul, Turkey, 12–16 November 2014).

  58. Koelstra S, Muehl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I. DEAP: a database for emotion analysis using physiological signals (PDF). IEEE Trans Affective Comput. 2012;3(1):18–31.

    Article  Google Scholar 

  59. Healey JA, Picard RW. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transp Syst. 2005;6(2):156–66.

    Article  Google Scholar 

  60. Mimansa J, Cristian-Paul B, Yuanhang L, Mihai B, Rada M, Emily Mower Provost. 2020. MuSE: a multimodal dataset of stressed emotion. In: Proceedings of the twelfth language resources and evaluation conference, pages 1499–1510, Marseille, France. European Language Resources Association.

  61. Markova V, Ganchev T, Kalinkov K. CLAS: a database for cognitive load, affect and stress recognition. In: Proceedings of the international conference on biomedical innovations and applications, (BIA-2019), Doi: https://doi.org/10.1109/BIA48344.2019.8967457.

  62. Beh W-K, Yi-Hsuan Wu, An-Yeu (Andy) Wu. MAUS: a dataset for mental workload assessment on N-back task using wearable sensor. IEEE Dataport. 2021. https://doi.org/10.21227/q4td-yd35.

    Article  Google Scholar 

  63. Zhang H, Feng L, Li N, Jin Z, Cao L. Video-Based Stress Detection through Deep Learning. Sensors. 2020;20(19):5552.

    Article  Google Scholar 

  64. Lu Y, Fu X, Guo E, Tang F. XGBoost Algorithm-based monitoring model for urban driving stress: combining driving behaviour driving environment, and route familiarity. IEEE Access. 2021;9:21921–38. https://doi.org/10.1109/ACCESS.2021.3055551.

    Article  Google Scholar 

  65. Vaitheeshwari R, Yeh SC, Wu EHK, Chen JY, Chung CR. Stress recognition based on multiphysiological data in high-pressure driving VR scene. IEEE Sens J. 2022;22(20):19897–907. https://doi.org/10.1109/JSEN.2022.3205385.

    Article  Google Scholar 

  66. Stržinar Ž, Sanchis A, Ledezma A, Sipele O, Pregelj B, Škrjanc I. Stress detection using frequency spectrum analysis of wrist-measured electrodermal activity. Sensors. 2023;23(2):963. https://doi.org/10.3390/s23020963.

    Article  Google Scholar 

  67. Nath RK, Thapliyal H. Smart wristband-based stress detection framework for older adults with cortisol as stress biomarker. IEEE Trans Consum Electron. 2021;67(1):30–9. https://doi.org/10.1109/TCE.2021.3057806.

    Article  Google Scholar 

  68. Kuttala R, Subramanian R, Oruganti VRM. Multimodal hierarchical CNN feature fusion for stress detection. IEEE Access. 2023;11:6867–78. https://doi.org/10.1109/ACCESS.2023.3237545.

    Article  Google Scholar 

  69. Alyan E, Saad NM, Kamel NS, Rahman MA. Investigating frontal neurovascular coupling in response to workplace design-related stress. IEEE Access. 2020;8:218911–23.

    Article  Google Scholar 

  70. Jambhale K, Mahajan S, Rieland B, Banerjee N, Dutt A, Kadiyala SP, Vinjamuri R. Identifying Biomarkers for Accurate Detection of Stress. Sensors. 2022;22(22):8703. https://doi.org/10.3390/s22228703.

    Article  Google Scholar 

  71. Wen TY, Mohd Aris SA. Hybrid approach of EEG stress level classification using K-means clustering and support vector machine. IEEE Access. 2022;10:18370–9. https://doi.org/10.1109/ACCESS.2022.3148380.

    Article  Google Scholar 

  72. Park S, Dong S-Y. Effects of daily stress in mental state classification. IEEE Access. 2020;8:201360–70. https://doi.org/10.1109/ACCESS.2020.3035799.

    Article  Google Scholar 

  73. Shahbazi Z, Byun Y-C. Early life stress detection using physiological signals and machine learning pipelines. Biology. 2023;12(1):91. https://doi.org/10.3390/biology12010091.

    Article  Google Scholar 

  74. Sevil M, Rashid M, Askari MR, Maloney Z, Hajizadeh I, Cinar A. Detection and characterization of physical activity and psychological stress from wristband data. Signals. 2020;1(2):188–208. https://doi.org/10.3390/signals1020011.

    Article  Google Scholar 

  75. Bizzego A, Gabrieli G, Esposito G. Deep Neural networks and transfer learning on a multivariate physiological signal dataset. Bioengineering. 2021;8(3):35. https://doi.org/10.3390/bioengineering8030035.

    Article  Google Scholar 

  76. Seo W, Kim N, Kim S, Lee C, Park S-M. Deep ECG-respiration network (DeepER Net) for recognizing mental stress. Sensors. 2019;19(13):3021. https://doi.org/10.3390/s19133021.

    Article  Google Scholar 

  77. Ghosh S, Kim S, Ijaz MF, Singh PK, Mahmud M. Classification of mental stress from wearable physiological sensors using image-encoding-based deep neural network. Biosensors. 2022;12(12):1153. https://doi.org/10.3390/bios12121153.

    Article  Google Scholar 

  78. Ehrhart M, Resch B, Havas C, Niederseer D. A conditional GAN for generating time series data for stress detection in wearable physiological sensor data. Sensors. 2022;22(16):5969. https://doi.org/10.3390/s22165969.

    Article  Google Scholar 

  79. Visualizing Scientific Landscapes, Jan. 2022, [online] Available: https://www.vosviewer.com/.

  80. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  Google Scholar 

  81. Fu R, et al. Symmetric convolutional and adversarial neural network enables improved mental stress classification from EEG. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1384–400. https://doi.org/10.1109/TNSRE.2022.3174821.

    Article  Google Scholar 

  82. Mane SAM, Shinde A. StressNet: hybrid model of LSTM and CNN for stress detection from electroencephalogram signal (EEG). Results Control Optim. 2023;11: 100231. https://doi.org/10.1016/j.rico.2023.100231.

    Article  Google Scholar 

  83. Pang L, Guo L, Zhang J, Wanyan X, Hongquan Q, Wang X. Subject-specific mental workload classification using EEG and stochastic configuration network (SCN). Biomed Signal Process Control. 2021;68: 102711. https://doi.org/10.1016/j.bspc.2021.102711. (ISSN 1746-8094).

    Article  Google Scholar 

  84. Bhatnagar S, Khandelwal S, Jain S, Vyawahare H. A deep learning approach for assessing stress levels in patients using electroencephalogram signals. Decis Anal J. 2023;7: 100211. https://doi.org/10.1016/j.dajour.2023.100211. (ISSN 2772-6622).

    Article  Google Scholar 

  85. Chakladar DD, Dey S, Roy PP, Dogra DP. EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomed Signal Process Control. 2020;60:101989. https://doi.org/10.1016/j.bspc.2020.101989. (ISSN 1746-8094).

    Article  Google Scholar 

  86. Ladekar MY, Gupta SS, Joshi YV, Manthalkar RR. EEG based visual cognitive workload analysis using multirate IIR filters. Biomed Signal Process Control. 2021;68: 102819. https://doi.org/10.1016/j.bspc.2021.102819. (ISSN 1746-8094).

    Article  Google Scholar 

  87. Longo L. Modeling cognitive load as a self-supervised brain rate with electroencephalography and deep learning. Brain Sci. 2022;12:1416. https://doi.org/10.3390/brainsci12101416.

    Article  Google Scholar 

  88. Kang M, Shin S, Jung J, Kim YT. Classification of mental stress using CNN-LSTM algorithms with electrocardiogram signals. J Healthc Eng. 2021;2021:9951905. https://doi.org/10.1155/2021/9951905.

    Article  Google Scholar 

  89. Tasnim N, Al Mamun S, Shahidul Islam M, Kaiser MS, Mahmud M. Explainable mortality prediction model for congestive heart failure with nature-based feature selection method. Appl Sci. 2023;13:6138. https://doi.org/10.3390/app13106138.

    Article  Google Scholar 

  90. Yaqoob A, Aziz RM, Verma NK, Lalwani P, Makrariya A, Kumar P. A review on nature-inspired algorithms for cancer disease prediction and classification. Mathematics. 2023;11:1081. https://doi.org/10.3390/math11051081.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Safia S. designed the study and wrote the manuscript. Vaishali K. provided supervision and guidance throughout the study. Deepali V. critically reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Safia Sadruddin.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval and Informed Consent

Ethical approval was not required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadruddin, S., Khairnar, V.D. & Vora, D.R. Issues and Challenges in Detecting Mental Stress from Multimodal Data Using Machine Intelligence. SN COMPUT. SCI. 5, 358 (2024). https://doi.org/10.1007/s42979-024-02730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02730-7

Keywords

Navigation