Skip to main content
Log in

Secure Model for Dynamic Access Control and Unreliable Access Point Detection: Enhancing QoS Through SDN in Wireless Networks

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Over the past few years, we have seen the spread of wireless networks in institutions, businesses, and private homes. Their wide variety, market availability, and ease of implementation have made this wireless technology more popular than wired networks. Nevertheless, enterprises are still demanding better quality of service to meet the needs of sensitive applications and avoid data loss. The SDN approach provides the ability to manage QoS dynamically via a controller. In this paper, we developed a secure model based on dynamic access control and the detection of unreliable access points. We also proposed QoS management in a wireless network by adopting the SDN approach to address connection problems and efficiently utilize resources. By employing these tools and techniques, we can narrow down all possible options to one single best choice. By comparing the results, our model validates its effectiveness in minimizing latency, jitter, packet loss, and transaction delay and offers a good opinion score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 7
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nunes BAA, Mendonca M, Nguyen X-N, Obraczka K, Turletti T. A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun Surv Tutor. 2014;16(3):1617–34. https://doi.org/10.1109/SURV.2014.012214.00180.

    Article  Google Scholar 

  2. Hu F, Hao Q, Bao K. A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun Surv Tutor. 2014;16(4):2181–206. https://doi.org/10.1109/COMST.2014.2326417.

    Article  Google Scholar 

  3. Jarraya Y, Madi T, Debbabi M. A survey and a layered taxonomy of software-defined networking. IEEE Commun Surv Tutor. 2014;16(4):1955–80. https://doi.org/10.1109/COMST.2014.2320094.

    Article  Google Scholar 

  4. Ibrahim LF, Salman HA, Taha ZF, Akkari N, Aldabbagh G, Bamasak O. A survey on heterogeneous mobile networks planning in indoor dense areas. Pers Ubiquit Comput. 2020;24(4):487–98. https://doi.org/10.1007/s00779-019-01243-y.

    Article  Google Scholar 

  5. Wang T, Li P, Wang X, Wang Y, Guo T, Cao Y. A comprehensive survey on mobile data offloading in heterogeneous network. Wirel Netw. 2019;25(2):573–84. https://doi.org/10.1007/s11276-017-1576-0.

    Article  Google Scholar 

  6. Kasim AN. A survey mobility management in 5G networks. arXiv preprint 2020; https://arXiv.org/2006.15598, p. 6.

  7. Saini A, Kansal A, Singh J. A survey: issues and challenges of VOIP traffic over WiMAX. https://docplayer.net/139960015-A-survey-issues-and-challenges-of-voip-traffic-over-wimax.html. Accessed 20 Dec 2021.

  8. Khorov E, Levitsky I, Akyildiz IF. Current status and directions of IEEE 802.11be, the future Wi-Fi 7. IEEE Access. 2020;8:88664–88. https://doi.org/10.1109/ACCESS.2020.2993448.

    Article  Google Scholar 

  9. Ait Oulahyane H, Bahnasse A, Talea M, Louhab FE, Al-Harbi A. Simulation automation of wireless network on opnet modeler. In: Mizera-Pietraszko J, Pichappan P, Mohamed L, editors. Lecture notes in real-time intelligent systems, vol. 756. Cham: Springer International Publishing; 2019. p. 237–49. https://doi.org/10.1007/978-3-319-91337-7_23.

    Chapter  Google Scholar 

  10. Meneses F, Guimares C, Corujo D, Aguiar RL. SDN-based mobility management: handover performance impact in constrained devices. In: Proceedings of the IEEE Conference on New Technologies, Mobility and Security (NTMS), 2018;1–5. https://doi.org/10.1109/NTMS.2018.8328716.

  11. Bilen T, Canberk B, Chowdhury KR. Handover management in software-defined ultra-dense 5G networks. IEEE Netw. 2017;31(4):49–55. https://doi.org/10.1109/MNET.2017.1600301.

    Article  Google Scholar 

  12. Gharsallah A, Zarai F, Neji M. SDN/NFV-based handover management approach for ultradense 5G mobile networks. Int J Commun Syst. 2019;32(17): e3831. https://doi.org/10.1002/dac.3831.

    Article  Google Scholar 

  13. Tran PN, Boukhatem N. Comparison of MADM decision algorithms for interface selection in heterogeneous wireless networks. In: Proceedings of the IEEE International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, September, 2008.

  14. Savitha K, Chandrasekar C. Vertical handover decision schemes using SAW and WPM for network selection in heterogeneous wireless networks. Glob J Comput Sci Technol 2011;11(9).

  15. Sheng-mei L, Su P, Ming-hai X. An improved TOPSIS vertical handoff algorithm for heterogeneous wireless networks. In: 2010 IEEE 12th International Conference on Communication Technology, 2010; pp 750–754. IEEE.

  16. Scott-Hayward S, O’Callaghan G, Sezer S. SDN security: a survey. In: 2013 IEEE SDN For Future Networks and Services (SDN4FNS), 2013; pp. 1–7. IEEE.

  17. Dargahi T, Caponi A, Ambrosin M, Bianchi G, Conti M. A survey on the security of stateful SDN data planes. IEEE Commun Surv Tutor. 2017;19(3):1701–25. https://doi.org/10.1109/COMST.2017.2689819.

    Article  Google Scholar 

  18. Coughlin M. A survey of SDN security research. 2014 https://www.researchgate.net/publication/279765201_A_Survey_of_SDN_Security_Research (accessed 20 Dec 2021).

  19. Hu H, Chen H-H, Mueller P, Hu RQ, Rui Y. Software defined wireless networks (SDWN): part 1 [guest editorial]. IEEE Commun Mag. 2015;53(11):108–9. https://doi.org/10.1109/MCOM.2015.7321978.

    Article  Google Scholar 

  20. Yang M, Li Y, Jin D, Zeng L, Wu X, Vasilakos AV. Software-defined and virtualized future mobile and wireless networks: a survey. Mob Netw Appl. 2015;20(1):4–18. https://doi.org/10.1007/s11036-014-0533-8.

    Article  Google Scholar 

  21. Mustafiz R, Hossain ASMD, Islam N, Rahman MM. Analysis of QoS in software defined wireless network with spanning tree protocol. Int J Comput Netw Inform Secur. 2017;9(6):61–8. https://doi.org/10.5815/ijcnis.2017.06.07.

    Article  Google Scholar 

  22. Das D, Bapat J, Das D. A dynamic QoS negotiation mechanism between wired and wireless SDN domains. https://ieeexplore.ieee.org/abstract/document/8049516/. Accessed 13 Dec 2021.

  23. Khiat A, Bahnasse A, El Khaili M, Bakkoury J. SAQ-2HN: a novel SDN-based architecture for the management of quality of service in homogeneous and heterogeneous wireless networks. IJCSNS Int J Comput Sci Netw Secur. 2017. http://paper.ijcsns.org/07_book/201703/20170307.pdf.

  24. M, AN, Roy A, Jha P, Karandikar A. Control and Management of Multiple RATs in Wireless Networks: An SDN Approach. arXiv.org. 2018. https://arxiv.org/abs/1801.03819v2.

  25. Ding AY, Crowcroft J. Software defined networking for security enhancement in wireless mobile networks. Int J Comput Telecommun Netw. http://home.in.tum.de/~ding/files/pre-print-comnet2014.pdf.

  26. Han Y, Li G, Feng B. An SDN-based wireless authentication and access control security solution. In: Li F, Takagi T, Xu C, Zhang X, editors. Frontiers in cyber security, vol. 879. Singapore: Singapore Springer; 2018. p. 179–89. https://doi.org/10.1007/978-981-13-3095-7_14.

    Chapter  Google Scholar 

  27. Demetriou S et al. HanGuard: SDN-driven protection of smart home WiFi devices from malicious mobile apps. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017; pp 122–133. https://doi.org/10.1145/3098243.3098251.

  28. Chen C, Lin Y-T, Yen L-H, Chan M-C, Tseng C-C. Mobility management for low-latency handover in SDN-based enterprise networks. In: Proceedings of the 2016 IEEE Wireless Communications and Networking Conference (WCNC), 2016; 1–6. https://doi.org/10.1109/WCNC.2016.7565105.

  29. Zeljkovic E, Marquez-Barja JM, Latré S. A large-scale demonstration of SDN-based handover management in IEEE 802.11 networks. In: Proceedings of the 2018 ACM Workshop on Wireless Security and Machine Learning (WiSec-ML), 2018; pp 102–104. https://doi.org/10.1145/3234200.3234223.

  30. Sun M, Qian H. Handover management scheme in SDN-based wireless LAN. J Commun. 2016;11(3):282–9. https://doi.org/10.12720/jcm.11.3.282-289.

    Article  Google Scholar 

  31. Van Adrichem NLM, Doerr C, Kuipers FA. OpenNetMon: network monitoring in OpenFlow software-defined networks. In: Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), 2014; pp 1–8. https://doi.org/10.1109/NOMS.2014.6838228.

  32. Selmchenko, M., Beshley, M., Panchenko, O., & Klymash, M. (2016). Development of monitoring system for end-to-end packet delay measurement in software-defined networks. Proceedings of the 2016 IEEE 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp 667–670. https://doi.org/10.1109/TCSET.2016.7452147.

  33. Tahaei H, Salleh R, Khan S, Izard R, Choo K-KR, Anuar NB. A multi-objective software defined network traffic measurement. Measurement. 2017;95:317–27. https://doi.org/10.1016/j.measurement.2016.10.026.

    Article  Google Scholar 

  34. Siniarski B, Olariu C, Perry P, Murphy J. OpenFlow based VoIP QoE monitoring in enterprise SDN. In: Proceedings of the 2017 IEEE International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2017; pp 660–663. https://doi.org/10.23919/INM.2017.7987354.

  35. He Q, Wang S. A low-cost measurement framework in software defined networks. Int J Commun Netw Syst Sci. 2017;10(05):54–66. https://doi.org/10.4236/ijcns.2017.105B006.

    Article  Google Scholar 

  36. Rowshanrad S, Namvarasl S, Keshtgari M. A queue monitoring system in OpenFlow software defined networks. 2017.

  37. Bahnasse A, Louhab FE, Ait Oulahyane H, Talea M, Bakali A. Novel SDN architecture for smart MPLS traffic engineering-DiffServ aware management. Futur Gener Comput Syst. 2018;87:115–26. https://doi.org/10.1016/j.future.2018.04.066.

    Article  Google Scholar 

  38. Zhang X, Wang Y, Zhang J, Wang L, Zhao Y. A two-way link loss measurement approach for software-defined networks. In: Proceedings of the 2017 IEEE/ACM International Symposium on Quality of Service (IWQoS), 2017; pp 1–10. https://doi.org/10.1109/IWQoS.2017.7969164.

  39. He Q, Wang X, Huang M. OpenFlow-based low-overhead and high-accuracy SDN measurement framework: OpenFlow-based low-overhead and high-accuracy SDN measurement framework. Trans Emerg Telecommun Technol. 2018;29(2): e3263. https://doi.org/10.1002/ett.3263.

    Article  Google Scholar 

  40. Zhang X, Hou W, Guo L, Zhang Q, Guo P, Li R. Joint optimization of latency monitoring and traffic scheduling in software defined heterogeneous networks. Mob Netw Appl. 2020;25(1):102–13. https://doi.org/10.1007/s11036-018-1191-z.

    Article  Google Scholar 

  41. Thazin N, Nwe KM, Ishibashi Y. End-to-end dynamic bandwidth resource allocation based on QoS demand in SDN. In: Proceedings of the 2019 Asia-Pacific Conference on Communications (APCC), 2019; pp 244–249. https://doi.org/10.1109/APCC47188.2019.9026511.

  42. Sinha Y, Vashishth S, Haribabu K. Real time monitoring of packet loss in software defined networks. In: Kumar N, Thakre A, editors. Ubiquitous communications and network computing, vol. 218. Cham: Springer International Publishing; 2018. p. 154–64. https://doi.org/10.1007/978-3-319-73423-1_14.

    Chapter  Google Scholar 

  43. Almutairi AF, Altowaijri S, Alghamdi TA, Khan SU, Shihada B. A genetic algorithm approach for multi-attribute vertical handover decision making in wireless networks. Telecommun Syst. 2018;68(2):151–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafsa Ait Oulahyane.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Wireless Networks and Mobile Systems” guest edited by Jaime Lloret Mauri and Joel Rodrigues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Oulahyane, H., Bahnasse, A., Bakali, A. et al. Secure Model for Dynamic Access Control and Unreliable Access Point Detection: Enhancing QoS Through SDN in Wireless Networks. SN COMPUT. SCI. 5, 88 (2024). https://doi.org/10.1007/s42979-023-02407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02407-7

Keywords

Navigation